Crash Course in UNIX and Linux Survival Skills

Linux and UNIX Basics

By JL@HisOwn.com

Jonathan Levin (C) 2007 JL@HisOwn.Com

Training & Consulting

V 1.01 - 5/23/2007

_

1 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Table of Contents

l. Introduction 3
Il. The UNIX CLI 10
[l X-Windows 22
v. VI 29
V. The FileSystem 35
V1. Processes 95
VII. Filters 71
VIIl. Basic Scripting 90
Appendix 97

“Cheat Sheet” (Quick Reference)

Regular Expressions

, I : About the Author:

Jonathan Levin specializes in training and consulting services. This, and many other
training materials, are created and constantly updated to reflect the ever changing
environment of the IT industry.

To report errata, or for more details, feel free to email JL@HisOwn.com

This material is protected under copyright laws. Un authorized reproduction, alteration, use in part or in whole is prohibited,
without express permission from the author

2 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Introduction

Introduction

What is UNIX

* Originally contrived in Bell Laboratories

+ Designed as a single user O/S

* Re-written in C, 1975

* An O/S by programmers for programmers

« User friendly, but very picky about who its friends are...

(C) 2007 JL@HisOwn.Com

UNIX started out as a single user operating sydtarthe PDP 7/11 platforms, in Bell Labs. Its nawees
coined as a pun on Multics, which was a commor

UNIX has since evolved immensely: the first majogdkthrough was introduced in 1975 — the OS was
rewritten in C — allowing for portability betweengpiorms. The original C source has since then lieensed
by IBM, HP, SGI, and other vendors in their owrenptretations of the OS. SCO currently holds thetsigo
the UNIX source (and was threatening to sue IBMidtting Linux in on it...).

3 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Introduction

Operating System Structure

Two roads diverged in the UNIX wood:

BSD — Berkeley Software Development
AT&T — (now known as System V)

user commands (e.g. at, ps, Ip/r).

(C) 2007 JL@HisOwn.Com

General experience is always roughly the same.

Implementations differ in API, kernel structure and some

Almost all UNIX types support the POSIX standard.

Introduction

There is no SINGLE UNIX. There are plenty of flasphowever.

Linux is the most common UNIX nowadays, owing sadpen sourced and free nature (although
(Free|Open|Net)BSD are also open, they are hasdbppular). The GNU utilities (also open source)

The following table shows a partial listing of UNBavors:

Vendor | Brand Versions Processor | Standard
Sun SunOS (Solaris) 2.5,2.6,7,8,9,10 Sparc/x86 | System V
HP HP-UX 10.20, 11, 11.11, PA-RISC System V +
11.11i, 11.23 POSIX
Digital Keeps changing.. | 3 (Ultrix) Alpha OSF + SysV
4 (Digital UNIX)
5 Tru64
SGI IRIX 5.3,6.2,6.4,6.5.x MIPS OSF + Sys V
IBM AIX 4.0-4.3,5.0..5.3 RS6000 + BSD
Linux RedHat, SUSE.. Kernels 2.4, 2.6 Any Hybrid/GNU

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Introduction

Introduction

UNIX Common denominator

All who claim to be “UNIX”, Linux included, support:

— The same basic user model

A common logical filesystem structure

A common permission/security model on the filesystem

The same concept of file driven 1/O, even for hardware

The same core commands and utilities

(C) 2007 JL@HisOwn.Com

Despite the multiple flavors of UNIX, they all hageather large common denominator:

The same basic user model out of box, all UNIX types have the same admiaisir usernames,

such as “root”, “bin”, “adm”, “Ip”. The user “datalse” is identical or similar in all.

A common logical filesystem structure- All UNIX flavors use the same logical filesystem
structure, with the same directory names and fansti- like “bin”, “shin”, “lib”, “etc”, “tmp”.. File
handling commands, like “cp”, “mv”, “Is”, are al&@mmon.

A common permission/security model on the filesyste — The file-security commands are also
similar — and are referred to as the “holy trinibf’chmod/chown/chgrp. Although this basic model
has been extended in several UNIX types, as itiemmely limited.

The same concept of file driven 1/O, even for hardare — In UNIX, everythingis a file. Even
hardware devices can be opened and accessedk@ifilds.

The same core commands and utilities as stated above, file handling and security contimiane
identical or similar. Process handling commands, the entire CLI is common enough for one
UNIX denizen to migrate to a new environment withoaticing any impediment.

5 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Introduction

Introduction

UNIX Deviants

Despite the common bases, deviations occur:

In Hardware specific commands

Vendor specific extensions

System Administration Commands

Actual Implementation of commands

Misinterpretations of the standard

(C) 2007 JL@HisOwn.Com

However, UNIX flavors still differ substantially dftunately, it's the advanced functionality, sushsgstem-
administration or hardware management commandgétatery specific. So we’re not likely to see thany
of these differences here.

6 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Introduction

Introduction

So where am |?

* ‘uname’ is used on all UN*X variants to determine flavor

» Like any UNIX command, it has “switches”:
— Switches prefixed by a dash/hyphen/minus (-)
— Multiple switches may be used, if not contradicting.
— Switches may be specified in no particular order.

uname — Print System Information L

Usage: uname [-asnrvmpio]

Description: Print system (-n)ame (-v)ersion, (-r)elease, (-p)rocessor/(-m)achine
In Linux: Release and Version refers to the Kernel release (using —r, -v).

Arguments:. (—a):ll information (same as —snvrmpio)

(C) 2007 JL@HisOwn.Com

With all the variants of UNIX out there, the bestyto find out what system you're on is thename’
commanc- and this will therefore be the first command préseérnere

As a typical UNIX command, we can use uname to destnate the use of switches. Notice this outpunfeo
Linux system, where the switches were employedigynene:

jormungandr (~) $ wuname -n
jormungandr

jormungandr (~) $ wname -s

Linux

jormungandr (~) $ wuname -m

1686

jormungandr (~) $ wname -7

1386

jormungandr (~) $ wname -p

1686

jormungandr (~) $ wname -o
GNU/L1inux

jormungandr (~) $ wname -v

#1 SMP Tue May 2 19:32:10 EDT 2006
jormungandr (~) $ wuname -r
2.6.16-1.2107_FC4smp

jormungandr (~) $ wuname -a

Linux jormungandr 2.6.16-1.2107_FC4smp #1 SMP Tue May 2 19:32:10 EDT 2006 1686
1686 1386 GNU/Linux

jormungandr (~) $ wname -nsmpoivr
Linux jormungandr 2.6.16-1.2107_FC4smp #1 SMP Tue May 2 19:32:10 EDT 2006 1686
1686 1386 GNU/Linux

7 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Introduction

Uname exists on all UNIX platforms, regardlessaufer, color or creed. Its output, however, is défgy and
corresponds to the system in question. On Solhessame command would get different results.

surtr (~) $ wuname -a

uname -a SunOS sng 5.8 Generic_108528-21 sun4u sparc SUNW, Ultra-Enterprise-10000
Surtr (~) $ uname -X

System = SunOS

Node = Surtr

Release = 5.8

KernelID = Generic_108528-21
Machine = sun4u

BusType =

Serial =

Users =

OEM# =0

Origin# =1

NumCPU = 4

Notice the output is different, and Solaris alspprts a different switch (-X) that Linux, for expha, does
not. But the general gist of the command is prettich the same.

8 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Introduction

Usage:

HELP!?

UNIX is not very user friendly

Fortunately, (usually), there is some kind of help:
- Consult the man for exact syntax/usage of commands
- Shorten the process by “whatis”

man - Read the Fine Manual

Introduction

man [-k] [-s ###] [something]

Description: format and display the on-line manual pages.
-k looks up by keyword (also — apropos)
-s looks in a particular section (out of 8 available sections)

- In Linux: Use the “info” command, and get reading.

(C) 2007 JL@HisOwn.Com

UNIX is, to say the least, not very user friendijthough most avid UNIX-philes will tell you it is but it's
picky as to who its friends a

The UNIX idea of “help” is in the “man” command — amn UNIXese — RTFM. The entire manual (a hefty
tome) is available (in text form, of course), amggh” enables you to view whatever command is @fret.

UNIX Manuals are divided into 8 sections:

Section

Description

1

User commands — Most of what you want is here

System calls — For lower-level developers only

Programming Interfaces - Most of what developerstisahere

File Formats / Device Drivers / Configuration ()

File Formats (Configuration Files)

2
3
4
5
6

Games (Yep. You read right. But usually this secigempty..)

7

Device Drivers (don’t go here)

8 (or 1(M))

System Administration commands

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The UNIX CLI

Working with shells

(C) 2007 JL@HisOwn.Com

10

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

The UNIX (primitive) User Interface

Most user interaction is performed over terminals
— physical (ttys): Are actual connected devices
— pseudo (pts) — e.qg. telnet, ssh, X — are network emulated

tty— print the file name of the terminal connected to standard input
Usage: tty

Description: Print system (-n)ame (-v)ersion, (-r)elease, (-p)rocessor/(-m)achine
In Linux: Release and Version refers to the Kernel release (using —, -v).

Arguments:. (-s):ilent = no output (useful only in scripts)

Terminal session maintained by a command shell.
— Many varieties exist: sh, ksh, bash, csh, tcsh, zsh...
— Shells allow the execution of commands, much like in DOS.
(C) 2007 JL@HisOwn.Com

The command environment you are in, when you tpée various commands, is calledreell. This is a
command interpreter, not unlike any -DOS command prom}- but FAR stronger in features, as we \
see later. Each such “shell” usually runs in dbetext of a “terminal” — a relic from the olden dayhen
UNIX had many dumb terminals connected to one laggger machine.

To see the “terminals” in action, one uses the' ‘tgmmand. This simple command merely returns the
terminal identifier. Terminals are generally cléissi as physical (/devi/tty..), or virtual, or pseuddev/pts/..).

11 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

UNIX CLI

The UNIX (primitive) User Interface

Terminals have different types, and features:
- Color support
- ASCII graphics characters

- Cursor keys (arrows) support

Terminal definition is maintained by the shell
- Environment variable “TERM” holds name.

- Arbitrary values or unsetting might lead to ... complications.

Kraken$ export TERM=vt100 (in TCSH: setenv TERM vt100))

(C) 2007 JL@HisOwn.Com

Terminals also have particular “capabilities” — sashcolors, cursor keys, and other features. Not al
terminals share the same featt

UNIX maintains a “Terminal Capabilities” databasea file (called /etc/termcap) as well as spediieninal
entries in a directory (/usr/share/terminfo). Thesable the various UNIX commands to remain agoosti
the type of Terminal used, as the system “translatepabilties such as full screen, color codeswéhout
the need to code them specifically into each amdyeterminal.

As the following example shows, setting the terrhinakes a difference for commands such as “vi” —the
visual editor, that require “advanced” capabiliteeseh as full screen.

Kraken$ export TERM=xxx
zsh: can't find terminal definition for xx

Kraken$ vi
E558: Terminal entry not found in terminfo
'xx' not known. Available builtin terminals are:
builtin_ansi
builtin_xterm
builtin_iris-ansi
builtin_dumb
defaulting to 'ansfi'

12 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

UNIX CLI

The UNIX (primitive) User Interface

Terminals might seem primitive, but they’re powerful
— Multiple commands can run simultaneously on same terminal
— Terminal parameters can be controlled and tweaked

stty - change and print terminal line settings F

Usage: stty

Description: Modify Terminal Settings, such as keyboard control characters
(=a):ll — display all parameters

Notes: When setting control keys, press CTRL-V before the actual key.

reset — Terminal Initialization

Usage: reset

Description: Reset terminal parameters (Linux/BSD only). VERY Useful if the
terminal display gets “garbled” because of an accidental output of CTRL-N.

(C) 2007 JL@HisOwn.Com

The ‘stty’ command is one of the least understaudilass used commands in the UNIX environment — but
sometimes it can be a lifesav

Kraken$ stty —a

speed 38400 baud; rows 24; columns 80; line = 0;

intr = AC; quit = ~\; erase = ?; kill = ~U; eof = ~D; eol = <undef>;

eol2 = <undef>; start = ~Q; stop = AS; susp = ~Z; rprnt = ~*R; werase = *"W;
Inext = AV; flush = 20; min = 1; time = 0;

-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts

-ignbrk brkint ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany imaxbel

opost -olcuc -ocrnl onlcr -onocr -onliret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

Kraken$ stty erase "H

13 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

The UNIX (primitive) User Interface

UNIX supports two maijor types of shells

Bourne Shell sh ksh csh C-Shell

l Korn Shell

Bourne-Again
Shell bash tcsh TC-Shell
Z-Shell zsh

(C) 2007 JL@HisOwn.Com

The Shell is the single most important command NXJ since it maintains the user session and enwent,
and launches other commands. However, there arenoustypes of shells, and your local UNIX or Lir
might vary.

All UNIX flavors come with three installed shelksh, ksh, and csh. Non-Standard shells can be fthatd
extend those three, and all fall into the two basiegories shown on the slides: The one starte¢dijy(The
Bourne Shell), and the one started by “csh” (Th8hedl).

The Bourne shell, named after its inventor, isrtiwest basic and limited of all the shells. Chanaasly
encounter it directly are fairly few, since it Hasen superseded by the open-source yet now altaostasd
BASH, or “Bourne Again” shell (a clever pun on thi@mne of the original). Bourne shell itself is ertidy
restricted and with very little functionality, bisis still used as a common denominator for serigiASH,
however is very common, and has been standardi#tealefault shell of choice in Linux, as wellnesver
versions of Solaris.

The Korn shell is a stronger version of Bournehveihhanced syntax that is especially suited foptsciit's
still a VERY inhospitable shell to be in, yet itaohave significant advantages, even over the ngshedis,
when it comes to command or “job” control, as wé gge later.

Zsh is the author’s favorite. Not always installgddefault, it still is part of any Linux (or lat&olaris)
distribution, with very nifty enhancements not dablie anywhere else.

Csh, and its successor, tcsh, are named afteytit@xsthey use — like the programming language of/iidch
is totally incompatible with those of the Bournefiovariety. The syntax differences will be demoatgtd as
we go along. One difference (‘export’ in sh/kshgetenv” in c/tc) was already shown.

14 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

UNIX CLI

The UNIX (primitive) User Interface

Shells are highly customizable by means of:

- Setting special environment variables
- In sh/ksh: use “export”

- in t/csh: use “setenv”
Common env. variables: TERM, PATH, HOME (and see below)

- Setting command aliases
- In sh/ksh: use “alias ...=...

”

”

- In t/csh: use “alias ...

(C) 2007 JL@HisOwn.Com

Command aliases are a very simple yet powerful engism to customize the shell. They enable to create
your own custom commands, which are merely symactyjar for the actual commands in question.
syntax in all shells is roughly the same, with thein difference being the use (or lack) of an eg|(=) sign.
The alias usually replaces the command, and nartements. TCSH, however, supports aliases whieh a
more powerful, enabling alias substitution as well.

We already saw that TERM environment variable. iBsihot the only one. We have several important
variables maintained by the shell:

15

Variable Use
HOME Set to the home directory. In ‘cd’ callable as ~, or with no arguments
PATH In sh/ksh/bash: $PATH, with : separators between directories

In c/tcsh: $path (as an array, in parentheses with spaces separating

LD_LIBRARY_PATH

Same as PATH, but for library loading (wicked useful, but advanced)

TERM Controls Terminal ID for full screen/color-enabled applications
SHELL Semi standard — sometimes $shell, instead. Not to be relied on
PROMPT Your shell command prompt. In tcsh — prompt. In KSH — PS1
OLDPWD The previous working directory. In ‘cd’ also callable as “-”

PWD Automatically set to what the present working directory is

USER MAY be set by your login script to your username

WATCH Zsh specific: allows you to watch for other users’ logins to system

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

UNIX CLI

The UNIX (primitive) User Interface

Bash, Zsh and tcsh allow for filename completion:
Bash: TAB completes or shows options

Tcsh: TAB completes, "D shows option
- set autolist to show completion options on TAB

- set fignore to ignore file suffixes on completion

Zsh: Programmable command/argument completion
- Can complete command line ARGUMENTS!

- “man zshcompsys” for more options

(C) 2007 JL@HisOwn.Com

Filename completion is the same idea as you haiz®i8 (using DOSKEY) or NT/2000 (using CMD’s
CompletionChar registry key). Zsh takes it to atirely new level by programmatically enabling
completion of command line switches (which are c@ndhspecific) and not just arguments (as filenames)

16 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI

UNIX CLI

The UNIX (primitive) User Interface

Shells special characters:

Character Meaning
! History (bash, tcsh zsh)
& Run command in the background
>>> < Output/Input Redirection

| Piping (Redirection between commands)

$ Variable recall

¢ Quoting, Variable recall allowed

‘ Quoting, verbatim

() Command Execution

?* Wildcards (? = single, * = any)
(C) 2007 JL@HisOwn.Com

The above characters are common to all, or modlisshe
The following example shows some of the “quotingéckground and history are shown in the exercise.

Kraken$ echo $TERM

linux

Kraken$ echo “$TERM”

linux

Kraken$ echo ‘$TERM’

TERM

Kraken$ pwd; (cd /etc; pwd) ; pwd
/

/etc

/

17 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The UNIX CLI

Kraken (tcsh)$ set correct=cmd
Kraken (tcsh)$ 7F
CORRECT>1s (y/n/el/a)?

Kraken (tcsh)$ set correct=all
Kraken (tcsh)$ moree /etc/passwdd
CORRECT>more /etc/passwd (y[n/el/a)?

The UNIX (primitive) User Interface

TCSH also allows for command or argument correction:

UNIX CLI

Zsh support more of the same by “setopt”

Kraken (zsh)$ setopt correct
Kraken (zsh)$ 7F
You meant 1s, right?

Kraken (zsh)$ setopt correctall
Kraken (zsh)$ 7f /etc/passwdd
You meant 1s, right?

You meant /etc/passwd, right?

(C) 2007 JL@HisOwn.Com

Command correction is VERY useful, especially imyearly days of the UNIX experience. It's one good
reason to forsake bash in favor of the betternbu-standard zsh. It's not perfect, but zsh has sorty;

smart algorithms for deducing the right commandtier right time.

18

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI - Exercises

The UNIX Command line environment

1. Getting to know the shell differences

If available, go into ksh, by simply typing “kshrype a few commands, then press the UP
arrow key, as if to recall a previous command. Wiegdpens?

To fix this, type “set —o vi”. Now use the arrowpsg(or press ESCAPE and use ‘j/k’ for
up/down, and ‘h/I' for left/right) to recall previs commands. To edit a recalled command
line, use ‘a’, ‘x’, ‘i"and ‘r'. What is the effecdf pressing these keys?

Use the “pwd” command to see what directory youcameently in. Then try “echo $PWD”".
Both commands show the same output. What is tiiereifce between them?

Next, set the prompt. Type the following strimxport PS1="“$PwWD >" (note: double
guotes) what happens. What is this useful for?

Next, ‘cd’ to a different directory. You'll note ¢hprompt hasn’t changed, and is “stuck” in
the previous directory. Why?

Repeat the prompt setting, this type using singlees instead of double quotes. What is the
effect you see? Why?

Repeat the above procedure for “tcsh” and “zsh”aWdre the differences you see?

19 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI - Exercises

The UNIX Command line environment — Cont.

2. Job Control

This exercise demonstrates the versatility of comarzontrol, called “jobs” in the various
Shells.

To begin, run the “man” command, or “vi”, or anynamand that requires a full screen.
Then, while it's running, press CTRL-Z. What hapgen

Next, use the “jobs” command. What does the ougduyou?

The command you have pressed C-Z on is nowsuspende. This means that it |
“frozen”, and you can now type other commands. Refiee previous operation with
some other command, and likewise suspend it. Teerjobs’.

To return to the suspended jobs, use “fg %#”, @pta“#” with the job number.

Now try the command ‘Is —IR /. This is likely tdast a listing of all the files on the
filesystem — a very long listing, at that. Press CIR and use the “fg” trick to resume the
job.

Try the same operations, using “&” at the end ef tommand name. “&” sends the
command to the background, and enables it to ranwoently. What commands fail the
“&” and do not run in the background?

20 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The UNIX CLI - Exercises

The UNIX Command line environment — Cont.

3. Introducing “screen”

Type the “screen” command. What happens?

Not too impressive, is it? Type a few commandsvan enter a full screen application like
“vi”. Now, press CTRL-A, followed by ‘c’. What hagms? Try CTRL-A again, followed
by SPACE. Can you explain?

Press CTRL-A followed by *?’ to get the help, aimtbfout what key sequence you would
need to “lock” the screen.

Next, press CTRL-A followed by “D”. You should geimessage saying “[Detached]".
Then, run “screen” again with the “-r’ switch. Eapl what happens.

Extra: start a different session from another taahiwhile the first one is still in “screen”.
Then type “screen —r —D”. What happens?

21 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

(C) 2007 JL@HisOwn.Com

22 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

X-Windows|

The X-Window System

A strong (but complex) client/server GUI window system
Developed @MIT. Common versions: X11R5 and X11R6
Originally designed for thin clients

Not very fast, and generates a LOT of network traffic.

(C) 2007 JL@HisOwn.Com

Long before Microsoft Windows, there was X. As Vpidia points out:

“X derives its name as a successor to a pre-198dam system called \fthe letter X directly following W
in the Latin alphabgtW ran under the \bperating systemW used a network protocol supporting terminal
and graphics windows, the server maintaining dispés. “

Other sources put the X in X-Windows for Xerox. Awray, X is a truly powerful user interface, andndact
the first user interface to support “Windows”. Wed#fore Apple “borrowed” it for its own, after witic
Microsoft “re-borrowed” from Apple.

23 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

The X-Window Display

X-Windows maintains a client server architecture (over
TCP/IP), enabling GUI applications to run detached from the
server. (Unlike Windows RDP)

The Display, or Server, provides the GUI for the application.
The actual application may be remote
Communication is carried over TCP ports 6000 to 6063(!)

X-Font Server (xfs) usually communicates over TCP 7100
(C) 2007 JL@HisOwn.Com

A fundamental concept in X-Windows is the “Displafrograms can redirect their GUI to a display éligu
by means of a command line argume-display) or by a corresponding environment variablee display it
also called the >Server. Note roles here are somewhat counterintuitivieaiditional “Client/Server”.

Note the large number of ports used (all TCP). Xxéws is rather hard to configure and secure from a
network perspective.

24 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

X-Windows|

Windows & Window Managers
The X-windows desktop is called the root (:0) display
Windows from multiple clients may be redirected
Only client area is redirected.

A Window Manager frames and moves the windows.

(C) 2007 JL@HisOwn.Com

As stated, a very cool feature of X-Windows, stilimatched by Microsoft Terminal Server, is theigbib
run just a single windowed application remotelyd aot the entire desktop. In fact, a-Windows sessio
may host multiple applications from foreign cliems windows are redirected, only their client aiea
passed. The rendering of the window frame and @aptie left for a specific application on the serealled
aWindow Manager.

Many such window managers exist. TWM, Motif, Aftegs, FVWM, and others. Linux provides Metacity
(for GNOME) or KDE.

25 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

X-Windows|

Starting X

Two ways to start X on Linux (assuming it is installed)

From a console session:

l Kraken$ startx &

As a login screen (Init run-level 5):

Kraken$ grep X11 /etc/inittab

Run xdm in runlevel 5
x:5:respawn:/etc/x11/prefdm -nodaemon

(C) 2007 JL@HisOwn.Com

PrefDM is actually a redirector to either GDM (tB&IOME Display Manager) or KDM (The KDE Display
Manager

Running in DM mode also allows other clients (mustably X-Terminals) to login graphically. The clis
find the server by means of XDMCP — a (usually) bliazest based protocol.

26 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills X-Windows

Using X

On the Server: Open up The X server for the client

Kraken$ xhost +client

OR
Kraken$ xhost+ (dangerous)

On the Client: Redirect the display

Gargantua$ export DISPLAY=Kraken:0 (in TCSH: setenv DISPLAY Kraken:0))

Gargantua$ xterm &

Important: Ensure network connectivity on port 6000 first!

(C) 2007 JL@HisOwn.Com

X will not work if any firewalls filter out port 600. To make sure that an X Session can be estab|isly to
telnet to por6000manually first

fi» Important Note: Sometimes commands such as “netstat” will reponinectivity and that port 6000 is
listening — but X will not function. This is almosértainly because of the IPTables firewall servaresome

other Kernel Level filter. In the case of IPTabl#ss could be disabled with /etc/init.d/iptabléss—
although a better solution would be to add a rolaliow X-based traffic (ports 6000-6030, and p@00).

(C) 2007 JL@Hisown.con

27

Crash Course in UNIX and Linux Survival Skills X-Windows - Exercises

X-Windows

1. Trying X-Windows

For this exercise, you will need to work with twangputers. One (remotely) a client, and
one (locally) a server. You can work on the renudient over SSH — so you domiéally

need to tie down two computers.

[. Login remotely to the client computer. Start darm remotely by means of the
following two commands, illustrated in the slides:

1) 2)

What happens?

II. How would you enable X to deal with the erroessage you've encountered?

[ll. With the session active, run “netstat —n” astlbmachines. What do you see?

IV. Repeat the exercise with a tcsh environmerntesrs of BASH/ZSH. What is the major
change required?

28 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

VI — The “visual” editor

(C) 2007 JL@HisOwn.Com

29

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

VI

pico

e/ed — ex EE— vi

vim *

emacs

(C) 2007 JL@HisOwn.Com

Vi is still the lowest common denominator.

UNIX editors evolved over the ages... as far as text goes.

Called “visual” because it was the first full-screen editor!

vi

Welcome to what just might be your worst nightmarghe wonderful “Visual Editor” — and the default &xdi

in UNIX and Linux

This “chapter” is going to be only a few pagesendth — because it is primarily through the fingbet one

learns how to use vi.

30

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

— A toolbar menu
— A context menu
— Editing

All in text mode!

The VI State Machine

* VI has to simultaneously allow:
— Arrow-key/mouse like positioning in the file

Navigation Mode

ESC

3

ESC
ENTER

A

EX Mode

(C) 2007 JL@HisOwn.Com

Li,Aar,R
0,0

vi

Edit Mode

Tip: ALWAYS hit ESC-twice if you “get lost”. That i get you into Navigation mode, and a comforting

“beep” will tell you that you're “safe

Tip II: Careful with CAPS LOCK! This would CHANGEhe meaning of your keys, therefore commands, and
VI will go “crazy” on you. Especially when usingjtk/l to navigate.. And they become H/J/K/L!

31

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

vi

Navigation Mode

« Commands in Navigation Mode (very, VERY partial list)
— Arrows (up, down, left, right)
— J,k,h,I (up, down, left, right)

Editing: (# = number of times to repeat operation)

— #x — delete (=cut) one character

— #d[d,w,L] — delete (=cut) line, word, or till end of screen

— #y[y,w,L] — yank (=copy) line, word, or till end of line

— p/P — paste deleted/yanked buffer after/before current line

Switch to edit mode:
— i/l —insert before current character/beginning of line
— al/A — Append after current character/end of line
— r/R — Replace this character or from this point on
— 0/0O — new line after/before current line
(C) 2007 JL@HisOwn.Com

32 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Ex Mode

« Commands in EX Mode (fractional list)
— :w (write) = save. Optional file name following
— :X (eXit) = save & exit
— :q (quit) = quit. Will prompt for save. q! to force
— :s/regexp/regexp/ = Substitute (search/replace)
» Requires line range. Use 1,$ for all file
— :r—Read current file contents, or optional file name following
— ## - Jump to line number ##

/regexp = Search for a pattern or regular expression

(C) 2007 JL@HisOwn.Com

33 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Vlvs. VIM

Semi-standard “Vi IMproved”

- downloadable from http://www.vim.org

- supports syntax highlighting (syntax on)
- Language sensitive
- MANY many improvements over VI

- alias vi to vim if you can.

(C) 2007 JL@HisOwn.Com

34 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The File System, explained

(C) 2007 JL@HisOwn.Com

35

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem
The UNIX FileSystem
Basic UN*X filesystem layout:
/
tmp
_ _ _ proc
sbin bin lib dev usr var etc
spool
sbin bin |
(C) 2007 JL@HisOwn.Com mall |p
All UN*X versions share the same basic file syst@nucture:
- Files and folders are all under one root (/)
- Folders may either be local directories, or ren{bteS) mount points
(much like windows network drives)
- The standard directories all have a well-knowrppse.
Directory Used for..
/bin “Binaries” —i.e. executables, and standard commands (manual

section: 1). This is where the core UNIX binaries was originally
found: The basic subset of commands that UNIX cannot do
command.

/shin “System Binaries” — executables that are used almost
exclusively by root for system administration (those in manual
section: 1M or 8). “Ifconfig” (the network interface configuration) is
usually found here. /shin is not in the normal user’s path setting,
so unless they specifically seek here, they're not likely to “see”
any of these commands as available.

lib “Libraries” — UNIX, much like windows, has dynamic link
libraries. Only here they're called “Shared Objects”, and are
marked with a “.so” extension. They are functionally equivalent to
DLLs.

36 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Directory

Used for..

fusr

“User” — This directory is used for 3 party programs and
additional software. (Think: “Program Files”). This directory
contains, among others, a structure mirroring /bin/shin/lib. The
original idea was, that additional software would go here, so as to
reduce chances of conflict (or accidents) with the core UNIX files.
Over the years, however, many UN*X blurred the distinction
between /usr/bin and /bin, to the point of actually linking them
together.

By convention, new software is usually installed either in “/opt”, or
in “/usr/local/bin”, and the proper path modifications are performed
in the users’ login scripts.

Ivar

“Various” - This directory was used for various data files

ftmp

“Temporary” — This directory is used for temporary files. It has
two important features:

- World writable: _Any user can read and write freely in this
directory — not just root. Non root users, in fact, may find this is
the ONLY directory they can write to, unless root has designated
a home directory for them.

- Not persistent across reboot: _ /tmp is not guaranteed to
“survive” a system reboot, and is likely to be cleared. This led
many UNIX vendors to implement /tmp as a “swap filesystem” —
that is, in virtual memory. This makes sense because /tmp is
frequently accessed — thereby improving overall system
performance. Since virtual memory is cleared during reboot, this
also achieves the “bonus” of starting with a clear /tmp every time.

fetc

“Et Cetera” — Latin for “all the rest”, this directory started its life
as a dump for “everything else” that couldn't find a place in other
directories. It is used primarily, however, for configuration files.
This is the closest to a Registry UNIX will ever get.

37

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

The UNIX Filesystem

UNIX only has a SINGLE mount point: / (root)

Multiple filesystems may be joined, or mounted, to the root
- ‘mount’ing grafts the new filesystem onto the tree
- Any directory can be used as a mount point
- If directory already has files, they are hidden by the mount.
- Filesystems can be:
- Local: additional partitions on the physical disks
- Remote: “network drives” exported via NFS or SMB

(C) 2007 JL@HisOwn.Com

A key concept in UNIX filesystems is “mounting” — &lmethod by means of which additional filesystems
plug in to the existing filesystem hierarchy. “Mdimg” is connecting a filesystem to an existingegiory—
that is otherwise normal, but is redefined as admgoint”. CD’ing to that directory will transpartly move
the user or process to the filesystem. Much lik€:&“D:” would move in Windows.

Mounted filesystems are generally physical deviepartitions on disks. They can be easily identified
because they read /dev/... for the device, usually/thdé /dev/sd* or /dev/dsk... However, with the same
ease and transparency, UNIX supports a distribiilessystem called “NFS” (The Network FileSystemida
Linux in particular also natively supports SMB — Therver Message Block that is the groundwork for
Windows'’ filesharing (Think \SERVER\SHARE).

When a directory is used as a “mount point”, atgsfthat it might actually contain are hidden. Tisat
hidden, not erased. Once the filesystem is unmduttte files “magically” reappear.

38 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

UNIX FileSystem Operations

Show mounted filesystems:

mount — mount a filesystem

Usage: mount [device [mount-point]]

Description: Show mounted filesystems, or mount a filesystem from a device
onto a mount point

Disk and filesystem Free space:

df — report filesystem disk usage

Usage: df [-k] [directory]

Description: Report mounted filesystems, and disk usage. —k for kbytes. If
directory is specified, report only for filesystem directory is part of.

(-k not required in Linux, and other options exist)

(C) 2007 JL@HisOwn.Com

The “mount” command is used — not surprisingly —¢biave the mount operation. This command can only
execute and actually mount a filesystem as theuset or administrator, and mounting is beyondsaope.
But it still proves to be a useful command to séawfilesystems are mounted, on which mount points.

Kraken$ mount

/dev/sda4 on / type ext3 (rw)

/dev/proc on /proc type proc (rw)

/dev/sys on /sys type sysfs (rw)

/dev/devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sdal on /boot type ext3 (rw)

/dev/shm on /dev/shm type tmpfs (rw,noexec,nosuid)

/dev/sda3 on /tmp type ext3 (rw,noexec,nosuid,loop=/dev/1oop0)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
Jormungand:/tmp on /jormy type nfs (rw)

Similarly, “df” shows a list of mounted filesystepalong with their usage. Notice that this shoves le
filesystems than “mount”, as it only related to picgl devices:

Kraken$ df

Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda4 147237696 49276096 90361652 36% /
/dev/sdal 202220 78350 113430 41% /boot
/dev/shm 511304 0 511304 0% /dev/shm
/dev/sda3 1976268 20800 1853456 2% /tmp
Jorumngand: /tmp 143490833 481023331 90519102 35% /Jormy

39 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

UNIX FileSystem Operations

List files (as in, dir):

Is — list directory contents l‘

Usage: Is[~oiorurnrnrnnnns] file
Description: list files or directories. With neverly every letter of the alphabet..

-a: all files -A: all but the “.” and “..”

-c: show creation time (requires —I) -C: sort by columns
-d: show directories as directories, without going into them
-F: show flags (* executable, @ link, / directory, | pipe, = socket)
-h: list sizes as human readable (requires —I or -s)

-i: Print index node number

-I: Long listing

-r : reverse sort order

-R: recursive

-s: show sizes -S: sort by size

-x: sort by lines

(C) 2007 JL@HisOwn.Com

‘Is’ is the most well known and one of the mostsadile UNIX commands. It lists files and/or diremtgs,
with a surprsing amount of switch— nearly all letters of the alphabet are supported @ase sensitive

In Linux, a VERY common option (often aliased){solor=tty’. While this option is far from the stdard, it
gives the very noticeable effect of file listingsdolor.

Unlike DOS, UNIX keeps three times for each file:
Access Time: Time of last access, read or writéessthe filesystem is mounted with “noatime” optio

Creation Time: Time of file creation.
Modification Time: Time of last write operation.

These times, however, can and often are manipylas#dg the ‘touch’ command. Touch may change dny o
the timestamps by —a —c or —m, respecively.

40 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The UNIX FileSystem

UNIX supports the following file types:

FileSystem

Is-l | -F Type Usage
- Plain file Everything...
d / Directory Directories
I @ | Symbolic link Shortcuts, Created by In(1)
c Char. Device Character I/O devices
b Block Device Block I/O devices
p | Pipe Created by mkfifo(1)
] = Socket UNIX Domain Sockets

(C) 2007 JL@HisOwn.Com

The above table shows the various types of filddhiX and Linux, as shown by the ‘Is —I' and ‘Is—F

commands

The important thing to remember is that EVERYTHIMNGepresented as a file. (including devices — naore
that later). Pipes and Sockets are the UNIX IPChaeisms.

41

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The FileSystem

UNIX FileSystem Operations

FileSystem

Copy files:

cp — copy files and directories

Usage: cp [-f | -i] [-p] [-1] src [src.. Src...] [target]

Description: Copy files. (-i)nteractively (prompting) or (-f)orcefully,
(-p)reserving permissions, and/or (-r)ecursively.

Move or rename files:

mv — move/rename files l_

Usage: mv [-f | -i] [-v] src [src.. Src...] [target]

Description: Move files. (-i)nteractively (prompting) or (-f)orcefully,
(-v)erbose (explaining).

Unlink: (at your own risk!)

mv — move/rename files

Usage: rm [-f | -i] [-R or -r] src [src.. Src...]

Description: Remove one hard link to this file. If this is the last one, the file is
gone forever. There IS no undelete/unrm!

‘cp’, ‘mv’ and ‘rm’ are three of the most commoniged commands, as they enable the moving, renamming
copying of files around the UNIX filesystem. Thengx is very similar, as shown above. Their usa

straightforward.

i Note: for novice types, consider aliasing “cp” , "rmfi@“mv” with their safer “-i" switch... especially

rm, especially if you run as root!

{5‘,‘3 Note II: Be CAREFUL with Recursive use of ‘rm’, especiallyttmthe “*” wild card. “rm —fR *", a
common “deltree” command, can wipe out your erftlesystems (ALL of them) if executed by mistakerfr

the root!

42

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

root@Paragon (/) #1s -1 "which 1s”

B i

Permissions can be set
for READ (r),

WRITE (w),
or EXECUTE (o)

In shorthand notation:
r-4 w-2,x-1

UNIX File Permissions

ugo where no man has gone before

-r-X--X--X 1 root root 24634 Jul 12 2000 /usr/bin/1s*

Permissions are defined for the

USER (u) — file owner,
GROUP (g) — one group,
OTHERS (0) — (“world”).

In a very primitive and naive model.

Owner permissions are meaningless

(may
(C) 2007 JL@HisOwn.Com

be chmod’'ed at any time)

FileSystem

The following table summarizes permissions, inrtibetal. As the table shows, it's much easier touged to

the octal notation, rather than work w-r, -w, and—x.

Bits Octal LS displayable

000 0 --- (= or-rwx)
001 1 --X (=X or -rw+x)
010 2 -W- (=W or -rx,+w)
011 3 -WX (=wX or -r,+wXx)
100 4 r-- (=r, or +r,-wx)
101 5 r-x (=rx, or +rx,-w)
110 6 rw- (=rw, or +rw,-X)
111 7 rwX (=rwx, or +rwx)

43

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

The UNIX FileSystem

permissions

chmod(1), chown(1) and chgrp(1)..

Root@Jormungandr# Is —IF /etc/passwd /etc/shadow

-rw-r--r-- 1 root root 4406 Jun 24 23:27 /etc/passwd
-r--——==—- 1 root root 528 Jun 24 23:27 /etc/shadow
Root@Jormungandr# chmod 777 /etc/shadow (don't try this at home)
Root@Jormungandr# Is —IF /etc/shadow

-rwxrxwrxw 1 root root 528 Jun 24 23:27 /etc/shadow*
Root@Jormungandr# chmod a=,u=r /etc/shadow

Root@Jormungandr# Is —I /etc/passwd /etc/shadow

-r-——-—-——-- 1 root root 528 Jun 24 23:27 /etc/shadow
Root@Jormungandr# chown nobody:sys /etc/shadow
Root@Jormungandr# Is -l /etc/shadow
-r-——————- 1 nobody sys 528 Jun

4 23:27 /[etc/shadow

(C) 2007 JL@HisOwn.Com

chmod (Change Mode) changes permissions,
chown (Change Owner) changes the owner of a file,
chgrp (Change group) the owning group.

44 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

The U

11\~ \JI‘I

/7 \

UNIX filesystem links are created with In(1)

Root@lormungandr# Is —I /etc/passwd

-rw-r--r-- 1 root root 4406 Jun 24 23:27 /etc/passwd
Root@Jormungandr# In /etc/passwd /hlink2Passwd
Root@lormungandr# Is —I /etc/passwd /hlink2Passwd

-rw-r--r-- 2 root root 4406 Jun 24 23:27 /hlink2passwd
-rw-r--r-- 2 root root 4406 Jun 24 23:27 /etc/passwd
Root@lormungandr# Is -i passwd /hlink2passwd

40424 /1ink2passwd 40424 passwd

Root@Jormungandr# find /-xdev -inum 40424

/etc/passwd

/T1ink2passwd

Root@Jormungandr# In /etc/passwd /tmp/hlink2passwd
Root@lormungandr# In—s /etc/passwd /tmp/slink2passwd

Tn: dinvalid cross-device 1ink

Root@Jormungandr# Is —I /etc/passwd /slink2Passwd

Trw-r--r-- 1 root root 4406 Jun 24 23:27 /slink2passwd ->
/etc/passwd

UNIX supports two types of link files — and the taxe totally unrelated.

Both are created usirig(1). The default are hard links. For soft/symbolice tis”.

Hard Links: Another pointer to the file.
- Linked at the INODE level: this is NOT a separfie but, rather — a separate name for the sarae fil
- Appear as same file. Link countls—Ireveals hard linkfind —inum finds all links.
- Cannot traverse filesystems, as inodes are onguerper filesystem.
- If target is deleted, contents unscathed

Symbolic Links: Another name to the name of the file.
- Two DIFFERENT files —the link is a NEW file, whosentents are merely the name of the target.
- Appear with a “@” ins —F, and “I" in file type, inls -I
- Can traverse filesystems, as name is resolvech &geah time.
- If target is deleted, link is broken.

45 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

UNIX FileSystem Operations

Find files anywhere:

find - search for files in a directory hierarchy
Usage: find [paths] [conditions] [action]

Description: find files in list of paths, subject to conditions, and execute action.

Where:
Paths: list of paths (directory names, separated by spaces)
Conditions: prefixed by “-” or “+”. Search modifiers
Action: last argument. -delete, -exec {}, -print, or others.

(C) 2007 JL@HisOwn.Com

‘Find’ is a highly useful command to locate files the filesystem according to a host of criteria.

condition Meaning

-inum ##H Filename has inode number ###. Useful for finding hard links
-name Find files with name __ . Specify wildcards * and ? in quotes
-size Find files with size Use + to specify minimum, - for maximum.

Also use G, M, K for Gigabytes, Megabytes, Kilbobytes

-perm ... Find files with exact permissions ... or also with permissions +
-type t Find files of type t (f = file, d = directory, | = symbolic link...)
-newer/-older file Find files that are newer or older than file.

-atime/-mtime/-ctime n | Find files with access/creation/modification time of n days ago
Also: use +n or —n for minimum/maximum.

-user/-uid/-group/-gid Find files that are owned by user or uid or group or gid

46 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Once files are found, one of several actions magrbployed:

The FileSystem

Action

Meaning

-delete

Execute “rm” on the file, deleting it. (dangerous, but useful)

Execute any command, once per file found. Use {} to replace the
filename in the command. (In most shells, use \{\} \;)!

-ok

Same as —exec, but prompt each time on command

-fprint outfile

Print name of file(s) found to file outfile

-print

Print names of file(s) found to stdout (this is the default action)

a7

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

The FileSystem

UNIX FileSystem Operations

Compare files

FileSystem

comm — compare sorted files line by line

Usage: comm [-1 -2 -3] file1 file2

Description: compare the two files, file1 and file2, if sorted. Use -1,-2 or -3 to
supress lines unique to file1, or file2 or those that appear in both files.

cmp — compare files, find first difference
Usage: cmp [-s] file1 file2 [skip1 skip2]

Description: compare the two files, file1 and file2, finding the first difference.
-s : silent compare (no output). Skip — offsets to start compare from

comm — compare files, find first difference L

Usage: diff [-e -i] file1 file2

Description: Display differences between two files, file1 and file2. case sensitive

Otherwise,output of “diff” may be passed to the “patch” command.

unless (-i)nsensitive specified. (-e) creates and ed script to create file2 from file1.

UNIX provides useful utilities to compare files afind differences.
Comm, cmp, and diff are similar, but sufficientlyffdrent to serve different purposes.

Diff is especially useful, since its output mayused by another utility, patch. Minor changes igénfiles,
like the Linux Kernel sources, come out in patatmfoso they can easily be applied on a continuagssb

48

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

SetUID Binaries in UNIX

How things REALLY get done

In UNIX, if you're not UID 0, you're a 0.

Problem: How do users perform privileged operations, like
changing passwords?

Answer: They BECOME root, for the purposes of executing
/usr/bin/passwd, or other such commands.

These are known as “setuid” commands (chmod u+s)

(C) 2007 JL@HisOwn.Com

UNIX has a clear distinction between root, LO, the omnipotent sup-user
And all the other users, with a UID > 0, who canvittually nothing.

However, to change one’s password involves a wpiration to the /etc/passwd
and/or /etc/shadow files... which can only be writtedoy the root user.

The same goes for scheduling jobs (at, cron), usiwwdevel or raw sockets (ping, traceroute), and
other commands.

UNIX supplies a ‘workaround’ mechanism, in the foofnSetUID.

49 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

SetUID Binaries in UNIX

It's all in that ‘s’..

root@Paragon (/) #1s -1 “which passwd’

-r-s--x--x 1 r‘jot root 13536 Jul 12 2000 /usr/bin/passwd*

Anybody with EXECUTE
permission to a setuid
binary, becomes, upon
execution, equivalent to the
owner

of that binary (in this case —
ROOT)

(C) 2007 JL@HisOwn.Com

To make a program setUID, u

chmod u+s program_name
or use a leading ‘4’ in the octal mode, e.qg.
chmod 4755 program_name

SetGID, that is, becoming a member of the groupvafers upon execution,
is also possible, though less used.

chmod g+s program_name

or use a leading ‘2’ in the octal mode, e.qg.
chmod 2755 program_name

50

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

SetUID Binaries in UNIX

A source of insecurity..

Assumption: SetUID binaries are..

- Sterile: Write and manipulate well known files, under strictly
predictable conditions.

- Hermetic: Users can'’t “break” the commands, to keep setUID
privileges once command is done.

Unfortunately, sterile commands are far from hermetic, and
vice versa....

Over 50 SetUID commands are usually found.

(C) 2007 JL@HisOwn.Com

Naturally, SetUID programs are potentially disaso If someone could execute a <

when under a setUID, he could get an instant “sb@h”, in which any command issued would be
effectively a root-issued command.

Find / -user root —perm +04000 —print

finds SetUID commands

51 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills The FileSystem

FileSystem

* |/O follows UNIX “Device convention”

* Devices may be:
— Character devices
— Block (buffered) devices
— Network Devices

+ Devices normally id’ed by major and minor #

(C) 2007 JL@HisOwn.Com

Linux supports the UNIX concept of a “Device”. Atiput/output to devices works as it normally wouwlith
a file, only the file — while present in the filesgm - is not a normal file on the disk, but rathem-nterface
to the device driver.

There are three types of devices, and we will déhl them all:

- Character Devices: Are devices which perform IfOad‘character” or unbuffered basis. Most devices i
the system are indeed implemented as charactecefevihese include the memory, terminals, 1/O ports
keyboard, mouse, and others

- Block Devices: Are devices which perform their k@ a “block” basis — Blocks are usually 512-byte
chunks, and are buffered by the system'’s buffeheaBlock devices may further have filesystemst il
top of them. Common block devices are the hardsdigid mass storage devices.

- Network Devices: Are a third class of devices —lengenting the network interfaces.

Character and block devices are created in theyStem using theniknod’ command. e.qg:
mknod /dev/mydev c 254 0

To create a device called /dev/imydev, with majanber 254 and minor number O.

The MAJOR is the # of device driver registeredhia Kernel

The MINOR is the # of device registered in the driv

To see a device driver listing, cat /proc/devicgammon devices are listed in the following table:

52 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

53

The FileSystem

Device Name Description Major Minor
mem Physical Memory 1 1
kmem Kernel Memory 1 2

null “Black Hole” 1 3
zero Infinite stream of “\0"s 1 5
random PRNG (blocking) 1 8
urandom PRNG (non-blocking) 1 9
tty0 Current Virtual Console 4 0
ttyl..tty6 Virtual Consoles (Alt-F1..F6) 4 1..6
ttyS0..3 COM1..COM4 4 64..67
tty0 Current (active) TTY 5 0
console Physical Console 5 1

fd, Process File Descriptors. - -

SymLinked to /proc/self/fd
stdin,stdout, stderr| Process descriptors. /dev/fd/0..2 -- --

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filesystem - Exercises

Filesystem

1. File system operations on directories

For this exercise to work, make sure the /tmp dingchas the permissions drwxrwxrwx.
Now, login as one user, cd to /tmp. and creatieanith private permissions (rw-------).
Login as another, and try the following operations:

a) reading the file

b) writing to the file using >>
c) renaming the file

d) deleting the file

Should any of these be successful? Are they? BExplai

Repeat the above, but only after setting the /timgctbry using “chmod +t /tmp”. What
happens? What is the effect of the sticky bit?

54 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filesystem - Exercises

Filesystem (Cont.)

2. Symbolic links

Create a file, say, /tmp/your_name and fill it watbntent.

Is —I that file.

Create a softlink and a hard link to this file.

Is —I all three (your file, the soft and hard linkyhat has changed?

Now, rm the original file, and Is —I the remainiages. What do you see?

Now, recreate the original file, and fill it wittew content. Is —| again. What do you see?
Cat all three, and explain the results:

55 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

(C) 2007 JL@HisOwn.Com

56

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes
Processes
A process is an instance of an executing program in CPU.

UNIX is a preemptive multitasking system, capable of

ser som im iiem cmr rem moamn p m m me am s § Eese e ze [Ry

runring mdary Corncuirernt processcs

Each process has its own distinct attributes

(C) 2007 JL@HisOwn.Com

57 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes

Daemons

A daemon, like a windows “Service” is a process running
“as part of the operating system” — no direct Ul.

Daemons are characterized by:
- Lack of controlling terminal (tty = *?’)
- No user input/output
- no STDIN/STDOUT/STDERR
- working directory is root.

(C) 2007 JL@HisOwn.Com

Most operating system processes and services areates. These incluc

-The task schedulers (atd and crond)

-The print spooler (Ipd)

-The InterNET Daemon (inetd)

-Web, mail and FTP servers (httpd, sendmail (smtipal, respectively)
-Kernel pageswapper (swapd)

-Miscellaneous RPC servers (rpc.___ d)

58 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes

Viewing Processes

/usr/bin/ps (sysV)

usage: ps [-aAdeflcjLPy] [-o format] [-t termlist]
[-u userlist] [-U userTlist] [-G grouplist]
[-p proclist] [-g pgrplist] [-s sidlist]
"format' is one or more of:
user ruser group rgroup uid ruid gid rgid pid ppid pgid sid taskid
pri opri pcpu pmem vsz rss osz nice class time etime stime
f s ¢ Twp nlwp psr tty addr wchan fname comm args projid project pset

/usr/ucb/ps (BSD)

|usage: ps [-aceglnrsuuvwx] [-t term] [num]]

Non-standard: Solaris: prstat, others: top

(C) 2007 JL@HisOwn.Com

The most useful command for viewing processesyisal) ps. This command comes in two flavors, hosvev
— SysV (default in Solaris, and most other UN*X) @hd BSD flavor (available in those systems as
/usr/ucb/ps). Both have similar capabilities, alilo sometimes one is preferable to the other. i trersion,
by GNU also exists — with numerous options... Its fesgicombine both the SysV and BSD versions:

KEREKKKFFK simple selectign *rrkkkke kkkkkkkkk selection by ligt *rrkrkek
-A all processes yCdommand name

-N negate selection -Greal group ID (supports names)

-a all w/ tty except session leaders -U by usalr ID (supports names)

-d all except session leaders -g bgisadeader OR by group name
-e all processes bymprocess ID

T all processes on this terminal -s preeesn the sessions given

a all w/ tty, including other users -t by tt

g all, even group leaders! -Uelifective user ID (supports names)
r only running processes U psses for specified users

X processes w/o controlling ttys t by tty

59 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Feekkkeek gUtpUL format **xxxrrrrx Fhkkkkkkkk * Iong options Fokkkk ko kkkk
-0,0 user-defined -f full +@BIp --User --pid --cols
-j,j job control s signal greup --user --sid --rows
-O,0 preloaded -0 v virtual memory --cumulativi@rmat --deselect
-I,I long u user-oriented Hsetty --forest --version
X registers --heading --no-hegd

*kkkkkkkk mlSC OptIOHS *kkkkkkkk
-V,V show version L list format codes f ASCII art forest
-m,m show threads S children in sum chg&nge -l format
-n,N set namelist file ¢ true command name umeric WCHAN,UID
-w,w wide output e show environment H process heirarchy

Solaris also haprstai1), whereas other systems hawop (displaying the “top 20” processes). AlX has
monitor, and HP-UX — gpm (a.k.a glancePIlus)

60 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

Processes

Process Attributes

Attributes are visible using the various “ps” switches

Attribute | Description lusr/ucb/ps | /usr/bin/ps
PID Process Identifier X X
PPID Parent PID -l -f,-l
CMD Executing command X X
Priority Execution Priority -l -I,-lc
NICE Nice value -l -l
TTY Controlling Terminal, if any X X
Owner [e]UID, [e]GID of owners -u -f -
PGID Process Group Leader PID -
SID Session Group Leader PID -

(C) 2007 JL@HisOwn.Com

Every process is uniquely identified by the - Process ID. This is a unique runtil
identifier (usually 32-bit), allocated in a monoiwadly increasing sequence (it can wrap around 32ubits
are a LOT of processes). The process ID is us#tkirarious process manipulation and control contsan

Every processes also has a PPID — Parent proce3si®is the PID of the process that
spawned it. (User processes are spawned by thedbgil). All processes start as fork()ed clonetheir
parent, then drift off. The lineage traces backib(PID 1, the master process). Also, a uniquenaction
exists between signal and child, which will be dissed later.

CMD — The command that spawned the process, wittithout arguments.

TTY — The controlling terminal. Most processes meilink to their controlling terminal,
which can be used for keyboard signals. Shouldegss lose its terminal, tty is marked as “?”.

Owner — Every process is owned by a certain usest i@ owned by root, some by
daemon, and the rest — by users. Root can contqoladesses (naturally). Other users are limitecotatrol
over their own processes.

Process groups and sessions groups are not diddusse

Processes

61 (C) 2007 JL@Hisown.con

62

Crash Course in UNIX and Linux Survival Skills

Processes

Priority/Nice — All processes are created equal, but some are eqoia than others.. The
process scheduling priority gives some processasepence over others. This is usually fixed, amhotbe
modified (at least not by normal users). Usersroadify the base priority to a limited extent, howewsing
thenice(1)command. Nice enables the user to be “nice” torsthand relinquish CPU time for others, by
specifying a “nice value” — 1 to 19. The name dé&i@sk to the dark ages, when UNIX was run on vergkve
PDPs. Root can be not-so-nice, and specify negatosevalues, 1 to -20.

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

Processes
Processes
Process Statistics:
Statistic | Description /usr/ucb/ps | /usr/bin/ps
STATE Execution State X -l
STIME Time of execution -u -f
TIME Cumulative time spent X X
SZ Size in memory -u,-l -l
%CPU Statistical Usage of CPU -u,-v
%MEM Percent of Memory in use -u,-v
(C) 2007 JL@HisOwn.Com
Process State:!
O Process is currently executing

N 4 W X

STIME : The time this process first entered executioGRU.
TIME: The cumulative time spent in the CPU, actually eieg (that is, processing opcodes, and not

sleeping).

Process is Runnable, and queued

Process is sleeping, or waiting for an event

Process is either sTopped, or Traced

Process is a Zombie: also appears as <defuncheip list.

SZ: Process size in memory.

63

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes
nice:
|nice: usage: nice [-n increment] utility [argument ...] |
renice:
usage: renice [-n increment] [-i idtype] ID ...
renice [-n increment] [-g | -p | -u] ID ...
renice priority [-p] pid ... [-g pgrp ...] [-p pid 1 [-u user ...]
renice priority -g pgrp ... [-g pgrp ...] [-p pid ...] [-u user ...]
renice priority -u user ... [-g pgrp ...] [-p pid] [-u user]
where -20 <= priority <= 19
(Solaris) priocntl:
usage: priocntl -1
priocntl -d [-i idtype] [idlist]
priocnt]l -s [-c class] [c.s.o.] [-i idtype] [idlist]
priocnt] -e [-c class] [c.s.o.] command [argument(s)]

Thenice(l) command, as stated, gives users the ability taqeish their CPU time in favor of others. Thit
useful if the command is known a priori to be oflpriority.

renice(1)works on already active processes, changing theérvalue.
Root can, of course, specify negative nice values.

priocntl(1), in solaris, enables fine tuning of process piyoProcess may be assigned to one of three classes
- Real Time
- Time Sharing

- Interactive

Processes may have their priorities changed intirael

64 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

Process and files

Root@Jormungandr# pfiles
usage: pfiles [-F] pid ...
(report open files of each process)
-F: force grabbing of the target process

To find processes holding specific files open — fuser:

Root@Jormungandr# fuser
Usage: fuser [-[k|s siglun[c|f]] files [-[[k|s siglun[c|f]] files]..

fuser codes: c-cwd, m-mmap, n-lock, o-open,

r-root dir, t-text(code), y-terminal
(C) 2007 JL@HisOwn.Com

To find open files held by a process (Solaris) — pfiles:

Processes

Notice the output is rather cryptic: S_IFCHR stafaischaracter device. S_IFDOC- RPC door. de'
(136,0) indicates the hard disk on which inode @8@his case, /devices/pseudo@0:4, tty4) residé3.and

GID are the owners of the file. Use find —inum ésalve the inode name.

Ymir$ pfiles $$
1081: sh
Current rlimit: 256 file descriptors
0: S_IFCHR mode:0620 dev:136,0 in0:996 uid:1012 gid:7 rdev:24,4
O_RDWR
1: S_IFCHR mode:0620 dev:136,0 in0:996 uid:1012 gid:7 rdev:24,4
O_RDWR
2: S_IFCHR mode:0620 dev:136,0 in0:996 uid:1012 gid:7 rdev:24,4
O_RDWR
Ymir$ cd /dev
Ymir$ pls—ILR [grep“ 136, *0
brw-r----- 1root sys 136, 0 Jun 23 12:25 c0t0d0s0
CrwW-r=---- l1root sys 136, 0Jun 23 12:25 c0t0d0sO
Ymir$ find / -inum 996 —print
/devices/pseudo/pts@0:4
Ymir$ fuser /devices/pseudo/pts@0:4
/devices/pseudo/pts@0:4: 13520y 1081loy 10790

65

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

Signals

i i ~ J . i

(C) 2007 JL@HisOwn.Com

2]
Q
-]
L
®
)
)
- @
»
=3
~
=
®
)
@
=
~
@
-5
-5
C
S
~
»
I
T
(2,
@
3
1
@

Signals are sent regularly by the O/S — but -

J
Users may send signals with the kill(1) command.

Processes

Signals are a very primitive form of process cantreending notifications to processes from other
processes, or the kernel. The notifications areapbiores — that is, they indicate some event hasm@twbut

contain no data whatsoe\

Thekill(1) command is a VERY useful command, enabling useget@rate signals on their own. All 31
signal-types (on some systems, e.g. AlX, 64) magdrg manually using this command. Only some ahthe

are commonly used, however, with the rest remaioivgrure.

66

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

67

Signals

Useful Signals

Signal name Notes

(1) HUP Hangup Sent on terminal hangup; restarts

daemons ; may be nohup’ed

2 (INT) Interrupt Equivalent of Ctrl-C.

3 (QUIT) Quit Equivalent of CTRL-\

9 (KILL) KILL Unmaskable, kills. 9mm to the head
15 (TERM) | Terminate Default of kill(1). Graceful ending
16 (USR1) | User-Def1 User Defined Action 1
17 (USR2) | User-Def2 User-Defined Action 2

Processes

Processes

(C) 2007 JL@HisOwn.Com

The table above lists the important signals.

HUP is sent by the terminal driver when the controlliagninal (tty) is disconnected (hence
the name, hangup). Programs such as vi can cataighal, save the session, and prevent loss &. \Wiost
programs simply die. To enable programs to contamuavay, use the “nohup” command.

INT is sent by the terminal driver when the controlliagminal issues a CTRL-C (or the
equivalentstty intr key). Most programs die, but some prompt the useohtinue or abort.

QUIT is sent by the terminal driver upon a CTRL-\. Usugknerates a core dump.

TERM is the graceful way to terminate a process — engliflito catch the signal, and
perform the custom rituals prior to departing theet world of UNIX. It is thus the default signarg by the
kill(1) command. Responsible programs close open filesyriban rollback transactions, and then clean up
nicely. Others simply ignore this gentle plea, godn executing.

KILL is the only unmaskable signal - the bona fide wakilt@ process outright. Anything
alive — dies instantly (no buts, no “in a second’,saving throw —in early UN*X versions, this killd@ait —
and caused and instant kernel panic!). Of cousg also means no saving open files, and sucht®ue
programs ignoring the TERM signal, most administraemploy the bad habit of appending “-9” to tiik k
command. Be advised this IS dangerous — it worlesiith stuck man or vi sessions, but you wouldréing
to kill your Oracle or Sybase with it. ThereforesdJat your own risk.

Some processes also accg@R1 andUSR2— one such example is named (the DNS
daemon). Those that do, often use it for debugditast simply ignore it, however.

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes

Signals

1/O related signals

Signal name Notes
23 (STOP) Stop Suspend (CTRL-2)
24 (TSTP) | Terminal | Sentto bg jobs on tostop or terminal
Stop exclusivity (full screen) request
25 (CONT) | Continue Continue stopped/suspended jobs

Behavior controlled through:

+ stty stop — followed by the suspend character (CTRL-V first)
+ stty tostop — stop bg jobs on any output, not just full screen
+ stty —tostop — undo stty tostop.

(C) 2007 JL@HisOwn.Com

STOPandCONT are two of the most useful, yet unappreciated ssgnghe former
suspends a process while executing (changingaitsssto sTopped), and the latter — resumes it.

When working in a local terminal, the STOP functbty is accessible via CTRL-Z (atty
susp. The active process (also called a “job”) is gtegh (suspended) immediately. The CONT signal may
then be sent either by typinfg” (returning the job to théoreground) , or by bg" —returning the job to the
background. Jobs then execute merrily in the backgraumd one of three happens:

- They need exclusive access to their controllimmieal (e.g. man, vi, full screen mode), or anyutip

- They need terminal output (of any kind) when skig tostopoption has been set — then, a TSTP signal is
sent.

- The controlling terminal exits, and they get HUR'# that doesn't kill them, they are killed thiest time
they will require input from the terminal.

By sending these signals to a process on anotimeini@, one can simulate CTRL-Z and
suspend processes (useful when you know a prased®ut to read/write from/to a file that isn’'t guieady

yet).

68 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes
The less interesting signals
Signal name Notes
4 (ILL) Illegal Instruction Invalid opcode/mem. fault
5 (TRAP) Debugger Trap Useful for tracing
6 (ABRT) Abort Terrible error
7 (EMT) Emulator Trap Not really useful
8 (FPE) Floating Point Exception division by zero, overflow
10 (BUS) Bus Error 1/0O error
11 (SEGV) Segmentation Fault NULL pointers, memory fault,
buffer overflows
12 (SYS) Bad System Call Invalid System Call (rare)
13 (PIPE) Broken Pipe “Prog1| prog2” — prog2 dies
14 (ALRM) Alarm “Alarm Clock”
18 (CHLD) Child status charé:]ed a.k.a SIGCLD. Child is dead.
The full list of signals is always available biilf —I” , or “man signarf (section 3, (Solaris - 3HEAD)).

These signals are less useful (no real need toteendmanually, other than during debugging). Magtals

in this list simply terminate the process, withomecdump. The exceptions:
PIPE, ALRM — quiet exit
CHLD —ignored unless waiting for a child process.

69

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Processes

Job Scheduling: at

To schedule jobs at a later time, use “at”.
Jobs are executed in a batch mode, by the atd.

Output, if any, is mailed to the user (but may be redirected).

AT has two flavors: BSD and SysV. Linux follows BSD:

Processes

BSD Sys V Functionality

at at Add job to at queue
atq at—q Display at queue
atrm at—r Remove job from queue

(C) 2007 JL@HisOwn.Com

To run jobs in batch mode, use #itél) command. This useful utility places commands in a
gueue, which is processed by the at daemon — aisldalemon wakes up every minute and checks for
pending jobs. If any are found, they are execuigith no controlling terminal

When running batch jobs, it is important to makeeghat they do not require input — use
“<* and pre-defined answer files, if they do. Outgtiany, is usually e-mailed to the user (howzemient ...
©), but may be redirected to files with the “>” atx” operators.

While at comes in two flavors with different syntabte functionality is essentially identical,

and the same queue is processed in both cases.

Example:
Prompt>at 17:30

at>echo “Go home!” > /dev/console
at>(control-D)

70

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes

Processes

Job Scheduling: cron

For recurring jobs, use the standard UNIX cron facility.
Jobs are stored in crontab files (/var/spool/cron/...)
accessible via crontab —e (or -I) command

Root@Kobo1d# crontab -I

#ident "@(#) root 1.20 01/11/06 smI"

#

The root crontab should be used to perform accounting data collection.
#

The rtc command is run to adjust the real time clock if and when
daylight savings time changes.

#

10 3 * * * /usr/sbin/Togadm

15 3 * * 0 /usr/1ib/fs/nfs/nfsfind

12 =*** [-x /usr/sbin/rtc] & /usr/sbin/rtc -c > /dev/null 2>&1

30 3 * * * [-x /usr/1ib/gss/gsscred_clean] && /usr/1ib/gss/gsscred_cleanv

crontab —| : List crontab
crontab —e : edit crontab files with default EDITOR

Crontab format is
Minute/Hour Hour/Day Day/Month Month/Yeabay/Week Command

Multiple values may be separated by commas.

71 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes - EXERCISES

Processes
This exercise has you answering several procestedetjuestions
Processes and files

e Find the process ID of xinetd

[I. Using Isof, see which files are held by xinetd

[ll. Using the /proc file system, which command Wwbyou execute for this information?

IV. Run ‘vi’ on some file in the /tmp file systerNext, in another tty, attempt to umount
/tmp. Is it successful?

Which commands would you run to enable a umouringh?

Process Control:

* Open two shells (in two separate ttys). ObtairnrtREDs by “echo 3” in each.
* From one shell, send a STOP signal to the othadt. Sthen switch to it. What happens?

[ll. From the other shell, send a CONT signalhe other shell. Now switch to it. Any
change?

72 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Processes - EXERCISES

Scheduling Jobs — | - at

e Using the “at” command to set a job to captureaatlve processes in a minute.

[I. Using the “at” command set a job to kill alltae shells one minute from now

Scheduling Jobs — Il — cron, anacron

e Add a cron job to run 10 minutes after the hour.

73 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

UNIX Filters

(C) 2007 JL@HisOwn.Com

74

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

75

Filters

UNIX Commands as Filters

Most UNIX commands are designed as filters:

Terminal

l Input: STDIN (0)

Command

Errors: Output:
STDERR (2) STDOUT (1)

Terminal (/dev/tty or /dev/pts/..)

All streams are usually connected to terminal

(C) 2007 JL@HisOwn.Com

UNIX was developed as a textual, terminal-orierdpdrating system. That far we already know.
Functionally, this means that UNIX commands aréesliio operate in a termin— Taking input from files, o
interactively from the user, and outputting messam®al errors to the terminal.

From a design standpoint, program I/O is separatedhree:

- Standard Input: Is defined as the stream from which input is reelten the program requires any input
that is not explicitly requested from a file. Byfaelt, this “Standard Input” (or STDIN, for shori3,
connected to the user’s terminal, as the useeigtieractive controller of the command executed.

- Standard Output: is defined as the stream to which output is emittVe say “output” to denote normal
operational output, such as the results of executiot including any errors, which are handled sztedy.
Standard Output, (or STDOUT, for short), is likeevisonnected to the terminal, as the command needs t
report back to the user, interactively situatethatterminal from which the command was invoked.

- Standard Error : is aseparate stream that is used solely for the purposes of eemorting. Called
STDERR, for short, it is normally indistinguishalfitem the output steram, as both are interleaved an
connected to the terminal.

This behavior in UNIX is default in all CLI commamigut not some X-Windows commands). However, it
generally goes unnoticed since (unless otherwaedy all three streams — input, output and errae— a
connected to the terminal, providing the expeciedabior of getting input from the user, and spittbutput
or error messages to the user. However, it is BxHus abilty to “otherwise state”, gedirect the streams
that provides UNIX with surprisingly flexibility inying commands together.

While nearly all commands in UNIX can have theitput and error streams redirected, filters proveaa
special subset. Filters operate either on filepr@ivided in the command line as a filename arguiner on
their standard input. That is, unlike any other optand, whose output may be redirected, filters akbow
default mode for work on their standard input — éfsgrenabling them to READ input “prerecorded” ifile,
or (as we shall shortly see), connected from amatbemand. Filters alSSNEVER modify their input stream.

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Filters

file

l Input: STDIN (0)

Command < /file

Redirecting Input/Output

All three streams can be redirected:
— STDIN can be connected to a file by means of the “<* operator
— STDOUT, likewise, by means of the “>” (“clob”) or “>>" (append)
— STDERR - by means of the “2>" (“clob”) or “2>>" (*append”)

Terminal

l Input: STDIN (0)

Command > /file

Errors: Output: Errors:
STDERR (2) STDOUT (1) STDERR(2)
Terminal (/dev/tty or /dev/pts/..) Terminal

Filters

Output:
STDOUT (1)

file

(C) 2007 JL@HisOwn.Com

To demonstrate redirection, we will use a simplme@nd — Is. This command, as you'll recall, providdde
listing. When called, however, with the name ofoa existent file, it will issue an error mess after all, it
cannot list that which does not exist.

If no redirection takes place, the error messageris to terminal, along with the output of the fit question:

Kraken$ Is - /etc/passwd nosuchfile
/bin/Is: nosuchfile: No such file or directory
-rw-r--r-- 1 root root 6223 May 13 02:31 /etc/passwd

However, notice the same, with the “>" operatorjalihwe use to redirect the output stream elsewhere:

Kraken$ Is —I /etc/passwd nosuchfile > /tmp/output
/bin/Is: nosuchfile: No such file or directory

And with the “2>", which we will use* to redireché error stream elsewhere:

Kraken$ Is —I /etc/passwd nosuchfile 2>/tmp/output
-rw-r--r-- 1 root root 6223 May 13 02:31 /etc/passwd

This can, and *will* prove to b&very* useful as we deepen our exploration into the UNdXIm.

Certain caveats associated with redirection wilsbewn in the exercises.

* - We use 2> on all shells but those of the csh/tcsh variant. In those shells, error redirection is impossible without output redirection,
and the syntax is somewhat convoluted.

76

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

77

Filters

Filters
Redirecting Input/Output
The STDIN and STDOUT streams can be piped:
— The “|” operator connects cmd1’s stdout to cmd2’s stdin
— The process can be repeated as many times as necessary
— STDERR can be independently redirected
file pipe
l Input: STDIN (0) l Input: STDIN (0)
Cmd1 Cmd2
Errors: | Output: Errors: | Output:
STDERR (2) STDOUT (1) | | STDERR (2) STDOUT (1)
Terminal pipe Terminal Terminal
(C) 2007 JL@HisOwn.Com

Redirecting to files opens up a slew of possiktitior command expansion, by saving output from a
command for later processing by another. Howeveremften than not the output of one command iful:
as input for another, and commands are run inextdfiequence. In those cases, rather than doingtlsimm
like:

cmdl > CMD1_OUTPUT
cmd2 < CMD1_OUTPUT > CMD2_OUTPUT
cmd3 < CMD2_OUTPUT

And so forth, it makes more sensepipe the commands together:

cmdl | cmd2 | cmd3

This powerful mechanism opens an in-memory chaowet which the output stream of one command can be
redirected into the input stream of another. Net gaving time for the user typing the sequencealso
increasing performance and saving on temporary spske.

The fact that “pipelines” like these can be puany length necessary makes UNIX commands highly
extensible — but leaves some design work for itssiseho now become architects, of sorts. UNIX pdesgi
you with the raw tools, that perform the most geneperations. It is up to you to craft more refirteols,
suited for particular purposes, by joining the bdgiilding blocks together. The next pages witwslyou
these building blocks in action, individually asllhas together with others.

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

Count lines, words or characters in a file

wc - print the number of newlines, words, and bytes in files
Usage: wc [-clw] [filename]

Description: Print count of (-w)ords, (-l)ines or (-c)haracters in filename
(if specified) or in standard input

Arguments:. If none of —c, -l or —w are specified, -clw is implied.

» Useless? Consider:

Kraken$ wc -/ /etc/passwd
127 /etc/passwd

Kraken$ Is-I| wc-I
13

(C) 2007 JL@HisOwn.Com

The ‘wc’ command (word count) is a generic utilibyat performs a very simple operation: countingdgor
lines or characters in a filename or its standapdit. As a filter, it can work with eith~ defaulting to
standard input if the filename is not specified.

While it might seem less than exciting behaviotyits out to be useful behavior after all. Theutitity can
serve to answer questions beginning with “how maapt have interpretation in file or line form.

For example —how many users are defined on thersysAs the example showsc-| /etc/passwdcan
answer that question, if we take into consideratiach user is represented as a line in that file.

Another example — how many files in a particulaediory? By counting the output of Is —I, (and
remembering to substract one) for the “total” lime, can answer thats —| | wc —I

78 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

Print head or tail of a file: head - output the first part of a file

Usage: head [-##] [filename]

Description: Print the first ## lines of file filename (if specified) or standard input.
If count of lines is not specified, 10 is default.

Notes: Linux head also allows count of bytes, not just lines.

tail - output the last part of a file

Usage: tail [-f] [-##] [filename]

Description: Print the last ## lines of file filename (if specified) or standard input.

If count of lines is not specified, 10 is default. May also print from line ## and after,
If using “+” instead of “-” for switch. The “-f’(ollow) switch leaves tail running until
stopped (ctrl-C) so that any new lines written to end of file are displayed (useful
for displaying logs or constantly updating files)

Notes: Linux tail allows many more non-standard options.

Useful complements to “wc” are the “head” and “téilters. They allow the selection of lines frortaadard
input or a file by line number. Their argument isuanber (represented about by ##), which is thecot
lines returned. If this argument is not specifig, default is 10.

Tail offers another feature of using “+” instead"df So that “tail -5” is the last 5 lines of tHie, and “tail
+5” is lines from the B and up (till the end of file).

Another useful feature il —f (thanks Craig!). This enables us to look at the 18s(or other) lines of the
file, and continue to hold the file open. Meaniag,new lines appear in the file (say, as outputegsages to
a log, or such), tail will display these lines eyt become available. This is particularly usefulsed in
conjunction with “grep”, which enables one to igelanly those lines that are meaningful.

79 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

Spllt afile split - split a file into pieces
Usage: split [-b ####[k|m|g]l | -1 #####] [filename prefix]

Description: Split filename (if specified) or standard input to pieces with file prefix
prefix (xa, by default). Parts will be limited to ### (-l)ines, or (m)ega|(k)ilo or
(g)igabytes.

Rejoin parts

concatenate files and print on the standard output
Usage: cat [-v] [filename [filename2..]]

Description: type stdin, or files (one after the other) to stdout.
Input is cat'ed verbatim, unless —v is specified, for non-printable characters

Notes: Inverse of split. E.g. ‘cat xa* > joined’ would recreate original split file.

(C) 2007 JL@HisOwn.Com

Picking up where “tail” and “head” leave off, “spjlenables to cut a file (or standard input) tocgi® This is
very common in breaking up huge files into manatgepkeces (as was the case for a long time whep¥
disks were used).

Split will automatically split its input into fileamed xaa through xaz.. (going to xba.... and fuiither
necessary). An alternative prefix can be used simge the prefix is the second argument, if youtvamise
stdin (as in, leave the filename argument blank)is‘used.

The switches to split are —b and —I (-b is supgbeteerywhere, whereas —| started its life as amadtimeix
extension). —b is very useful in that it can cuoigpecific file sizes in bytes (default), Kilobgtéby appending
a “k” to the number), Megabytes (appending an “or’gven Gigabytes (“g”). The only drawback is ththt
“splits” have to be the same size.

To join files together, use “cat”. Cat is also usegust type files to stdout.

80 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

Cut columns from a file

cut - remove sections from each line of files

Usage: cut -c ##-## [file]
cut [-d’ 7] -f [####] [file]

Description: copy selected (-c)haracters of (-f)ields from stdin/file to output.

For —c: Specify characters by position. E.g. 1,2,3,4 or 1-4, or 1-2,3-4...
For —f: Specify fields. Specify (-d)elimiter character (Default is TAB)

(C) 2007 JL@HisOwn.Com

‘cut’ is a surprisingly useful utility that can isde specific columns or fields from its input teahd pass only
them to the outpt

Cut operates either by characters (-c, in whicle ¢hs character range should be specified), oretgsf (-f) in
which case the default delimiter for fields is TABis delimiter could be changed easily by speocdyid.

81

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

Sort any file (VERY useful..) sort - sort lines of text files
Usage: sort [-n] [-r] [-t ?] [-##] [file [file..]]

Description: Sort files on command line or stdin and dump to stdout.
-n: Sort numerically
-t: Specify delimiter for fields (default: tab)
-r: Reverse sort
-#: Sort by this field

Uniqg (must sort first!)

uniq - remove duplicate lines from a sorted file
Usage: uniq [-c] [-d] [-u] [sorted_file]

Description: Pass files or stdin to stdout, supressing duplicates, or showing
(-u)nique lines only, (-d)uplicate lines only, or (-c)ount of each line.

(C) 2007 JL@HisOwn.Com

Sort and Uniqg are two commands that are often tagether, and the latter requires files to be sorte

Sort serves as a universal input sorter on anyfitextype. The default sort is lexicographic, lsan be
modified by numerous switches.

82 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

The Mother of all filters: GREP
Isolate lines by text, or regular expressions

grep — Get Regular Expression and Print L
Usage: grep [-inv] expr [filename]

Description: look for lines containing regular expression expr in filename (if
specified) or in standard input.

-v: Invert GREP operation (lines NOT containing expr)
-n: Print line numbers along with matches
-i. Case insensitive search

Notes: MANY more switches available in Linux. Also supports GREP_COLOR.
Adopt the best practice of always delimiting expr in single quotes (e.g. ‘expr’)

(C) 2007 JL@HisOwn.Com

Grep is, by far, the most powerful of all UNIX <s. This is due to two reasons:

- Grep answers a need for a common task: isolatieg Iin a file according to a certain text theyteam
Whereas ‘head’ and ‘tail’ could find lines by numpgrep enables you to look for keywords and other
interesting identifiers in files or command output

- Grep bolsters the above functionality witlgular expressions- these are pattern strings, that enable you
to specify either fixed text, or use a variety dideards and placeholders.

If you are unfamiliar with regular expressions, RegExp”s, as they're affectionately known, youlveen
missing out. Regular expressions are *incrediblgtvprful ways to deal with all forms of text. Insteaf
complex string operations such as cutting, splieind concatenating, regular expressions can actieveame
functionality with a single pattern, that can beported by many UNIX utilities (grep being just cofehem —
‘vi' is another), as well as modern programminggaages. The appendix lists some regular expresgiaax
highlights.

The following examples show three modes of usaghisfwonderful* command.
Example I: using grep for basic string matching

Kraken$ export GREP_COLOR

Kraken$ grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin

In the first example, we look for lines containingot’ anywhere in the line, by simply specifyingpbt’. The
lines returned show where ‘root’ was found. We tiigenon-standard Linux extension of “GREP_COLOR” to
highlight the results.

* - Yes, I'm biased, but no, I'm not getting carried away. Grep is a practical swiss army knife in the UNIX world, used for all sorts of
purposes: from parsing log files to extending other commands. It also has ports to the Win32 world.

83 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Example 1l: using “*" and ‘$’ to limit matches

Kraken$ grep “root’ /etc/passwd
root:x:0:0:root:/root:/bin/bash

Kraken$ grep ‘sh$’ /etc/passwd
morpheus:x:500:500:Morph:/home/morpheus:/bin/zsh

Notice the difference in results for the secondhexe illustrated. By prepending the “*" characteiour
expression, we now see only those lines liegin with our expression. ' (shift-6 on most keyboard) thus
serves as an imaginary ‘beginning-of-line’ charadié&ewise, the ‘$’ serves as an imaginary ‘endioé’
character, and appending it to the expression givthe meaning “lines thand with our expression”.

Note: because ‘$’ and ‘N often have special megsito the command shell itself, we use single qutate
delimit our expression. Since most often you'll wemuse Regular Expressions rather than fixedgdriit's a
good practice to adopt the usage of delimitingetkgression by single quotes whenever you use it.

Example 11l : inverting grep (using —v)

Kraken$ grep —v sh$ /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
Ip:x:4:7:1p:/var/spool/Ipd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

Notice none of the output lines end with “sh”.

84 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Useful UNIX Filters

* The aunts of all filters;: FGREP and EGREP

» Faster (fgrep) or Extended (egrep) versions of GREP

* Generally used by ‘advanced’ users.

(C) 2007 JL@HisOwn.Com

Most UNIX versions support two additional varianfsgrep — and, in fact, the ‘grep’ you use is likédybe
aliased to one of the tw

farep — is a faster version of grep, that supports fixatlgons rather than regular expressions. If
all you're looking for is specific text, rather tha variable RegExp, use this grep instead.

egrep—is an extended version of grep, that supports evane regular expressions. Its RegExp engine
enables the use of additional characters suchea§)tbombination.

Example: Find lines beginning with the word “root” OR the md'adm”: Normal grep can’t do that.

Kraken$ egrep “‘(rootladm)’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
adm:x:3:4:adm:/var/adm:/sbin/nologin

85 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

86

Filters

“translation” of input characters

Convoluted UNIX Filters

Filters

tr - translate or delete characters

cut [-d’ 7] —f [####] [filel

in _character_set1_to _character_set2_.

Usage: tr [-d] [-s] _character_set_ _character_set_

Description: copy input from stdin (only!) to output, while translating characters

(C) 2007 JL@HisOwn.Com

‘tr’ is a mnemonic for ‘translate’. This commandaidilter, copying its standard input to standantpboit, much
like ‘cat’. But it has further functionalit— given two string (character sequence) argumentsceand targe
it will replace each character it encounters inrifaut also found in the source string, with theresponding

character in the same position in the target string

Is that confusing? Well, as the following will shotlis functionality can be used in a variety ofyaa

Example |: Uppercase a file

Kraken$ tr[a-z]’ [A-Z]' < letc/passwd
ROOT:X:0:0:RO0T:/ROOT:/BIN/BASH
BIN:X:1:1:BIN:/BIN:/SBIN/NOLOGIN
DAEMON:X:2:2:DAEMON:/SBIN:/SBIN/NOLOGIN
ADM:X:3:4:ADM:/VAR/ADM:/SBIN/NOLOGIN

.. (output truncated)..

Example 1I: Get rid of characters you really don't like:

Kraken$ echo XXxyYyxXx |tr -d ‘X’
XyYyX

Example 1l : Squish repeating characters (like space or talfput... why is this usefulp

Kraken$§ Is -l

-rw-r--r-- 1johnnyusers 3595 Sep 19 2006 test.log
Kraken$ Is—/ [tr-s' ‘'

-rw-r--r-- 1 johnny users 3595 Sep 19 2006 test.log

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters

Filters

Even More Convoluted UNIX Filters

‘sed’ is.. Well... sEdistic:

sed — Stream Editor L

Usage: sed -e ‘commands’ [files]
sed -f ‘command-script’ [files]

Description: execute sed commands or command script on STDIN or files.
Commands: (partial listing)

[/../la — append text
[/..1d — Delete line
[/../]s — Replace regular expression with another (e.g. s/hello/goodbye/

[/../lq - Quit

(C) 2007 JL@HisOwn.Com

‘tr' is powerful, but limited: it can only replacgpecific characters, and has no context determimatilt
cannot replace characters in specific words, ontbels themselve

This is where sed — ttstreameditor — comes into the picture. This is a classiefiloperating from its
standard input to its standard output, while preitesdirectives according to regular-expressions.

The full syntax of sed is far, far too complex tar scope. O'Reilly has an entire book devotedBD @nd its
accomplice, AWK (seriously, these ARE real namebfX commands). The following examples, however,

show some common uses of this little known utility.

(C) 2007 JL@Hisown.con

87

Crash Course in UNIX and Linux Survival Skills Filters - Exercises

Filters
1. Redirection

Run the ‘Is’ command with a nonexistent file argumnas well as a real one, and capture
first its output, then its error stream, into tvaparate files. Use ‘cat’ to make sure the files
indeed have the proper output. Is everything aseyqect?

Now try to capture both output and errors to saileg$ay, /tmp/redirect). What command
would you use? And are the results as expecteudt,lexplain why?

In order to capture both streams, but not to haneedestroy the other, we use a special
notation of “2>&1”, which essentially tells the sht® “redirect stderr(2) to the same place
as it previously did stdout(1)”. Try this and makee this works:

2. Clobbering

Repeat the ‘Is’ redirection using the “>” operasereral times. Each time you try the
command, what happens to the file contents? Whhtipotential issue with this?

Now type: setopt noclobber (zsh), set noclobbesi{haand repeat the previous step. What
happens? Does the ‘I’ command run? Explain.

88 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

2. Creative Filter Usage

Filters (cont)

Explain what the following commands do:

a) head -5 /etc/passwd | tail -1

Filters - Exercises

How would you achieve the same result, with theesaommands, but with different

arguments?

b) Is —I /tmp | wc -

c)ls -l /bin | grep “*...x

d) cut —d’’ —f1 /etc/passwd

89

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

3. xargs

This exercise introduces a new command, calledsxarg
Try the following: ‘echo a b c | xargs echo’ amsl|'xargs echo’. What is the effect?

Filters (cont)

Filters - Exercises

Now try: ‘find / -name “/bin/s*” —print | xargs Is

As opposed to find / -name “/bin/s*” —exec Is \{ \}
What is the (barely noticeable) difference?

90

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Filters - Exercises

Filters (cont)

4. Sort, Cut, and friends..

Working with the password file, what are the comdsto sort it by...
a) Username (%column)

b) User Id (34 column)

c) Full name (description 5column)?

Use the “Cut” and sort commands on the passwaddikcreate a new file that will contain
the columns of full name, username and userid amlsaid order.

Use a combination of commands to print out thene®aes (only) of all users that are
equivalent to the root user (i.e. have a UID of)“0”

Use a combination of commands to print out the nahtbke file last accessed in a given
directory

Use a combination of command to print out the nafitbe largest file in a given directory

91 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

5. Unleash the power of grep

This exercise shows grep’s versatility. Try thddoling regular expression on any XML or

Filters (cont)

HTML file: "<\ (. *\).%*>.%*</\1>"'

What is the effect? Explain?

Filters - Exercises

Devise a regular expression to match tags withhild elements.

Advanced Devise a regular expression to find broken tags

92

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Basic UNIX Scripting

(C) 2007 JL@HisOwn.Com

93

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Basic Scripting

Basic Scripting

UNIX Shell Scripts

* UNIX Shells are more than mere command interpreters

» Shells support a rich programming language:
— Users can create their own login scripts
— Frequent tasks can be automated
— Existing commands may be grouped and extended

+ Shell syntax falls into one of two categories:

— Bourne: ksh/sh/bash/zsh
— C: csh/tcsh

(C) 2007 JL@HisOwn.Com

(C) 2007 JL@Hisown.con

94

Crash Course in UNIX and Linux Survival Skills Basic Scripting

Basic Scripting
Using Variables

» Shells support assignments of arbitrary variables
— Set variable_name=variable_value to assign
— Access value by prepending a “$” to variable name

» Variables made be made available to programs
— Bourne: export C: setenv

« Common practice: Assign command output to variables
— May be stored for future reference or decision making

(C) 2007 JL@HisOwn.Com

95 (C) 2007 JL@Hisown.con

96

Crash Course in UNIX and Linux Survival Skills

Basic Scripting

Flow Control in shells

» Shells support Decision Making:

If expression; then

else

.

* And looping:

for var _list_;
do

done

(C) 2007 JL@HisOwn.Com

Basic Scripting

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Basic Scripting

Basic Scripting

Commands as boolean operators

* UNIX Commands return an implicit “return code”
— 0 denotes command success
— >0 denotes some error condition (depends on command)

* Return value may be collected by:
— Using the $? Variable
— Placing the command in an ‘if’ statement

« Commands may be run dependently:
— cmd1 && cmd2 — Run cmd2 only if 1 succeeds
— cmd1 || cmd2 — Run cmd2 only if 1 fails

(C) 2007 JL@HisOwn.Com

97 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Basic Scripting

Basic Scripting

Advanced Scripting

* UNIX supports a host of scripting languages natively:
— AWK/GAWK/NAWK: A line-editor based scripting language
— Perl: A full scripting language now incorporated in most UNIX

— Tcl/Tk: A powerful language with X “ToolKit” support

(C) 2007 JL@HisOwn.Com

98 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Basic Scripting - Exercises

Basic Scripting

1. Creating your own login script.

Create a simple shell script. Have the script eteeauwelcome message, set your
aliases, and an additional message if it deteetsldite today is a Wednesday. (hint: use
“date” — and consult the man for the right argument)

To enable the login script, copy it into your sisglersonal initialization filé.zshrc, .kshrc
or .bashrc)

2. Creating a custom command

a) Create a shell script to print out details on agiuser in the system. The script\
print out the time of last login (by using the ‘fasommand”), as well as the user
information (from /etc/passwd) in a more hospitdblenat.

i) Accept a command line argument by using “$1thea script. This will be the username

ii) Print an error on too many arguments, by chegkhe value of $#.

b) Make the script executable (chmod...)

c) Try the script! How would you invoke your scrippm the command line?

99 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Appendix

(C) 2007 JL@HisOwn.Com

100

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Cheat Sheet

UNIX “Cheat Sheet”

Copy files:
cpsrc dst

src =source file
dst =destination file, or directory (may be ., for cemt)

Copy a directory tree

cp —pRsrc dst

src =source directory

dst =destination directory (may be . , for current)

-p =preserve permissions (otherwise you will becomeeavaf these files)
-R =recurse (into subdirectories)

Delete files:
rm —i filel file2

filel, file2.. =files to delete
-i = interactively. rm nags and asks “are you sure”e3aff beginnel

Delete a subtree (deltree):
rm —fR dir

dir = directory to obliterate out of existence
-f = force. rm won’t ask nagging questions (but procateygbur own risk)
-R =recurse into subdirectories. This is required simee&annot remove a directory otherwise.

Move/Rename:
mv file_or_dirl target

file_or_dirl =File or directory to move/rename

target =new name (for a file/dir) or target directory (fowltiple files)
Optional:

-f/-i = forcelinteractive. mv won’t/will ask questions

101 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills Cheat Sheet

UNIX “Cheat Sheet” (cont.)

Find a file in the local file system:

find where criterion action

where =one or more directories to search in (usually “/)
criterion =for search. e.g.
-namefoo : Find file named foo
-inum 123: Find filename(s) of inode 123
-size-5000: Find files of up to 5000 bytes
-newerfilel: Find files created after filel was.
action =-print . echo the filename (default)
-exec cmd {}\;: execute command on file ({}\; is a placeholdetUBIT use \;, no space!)

Display Directory tree (with sizes):
du —k dir

dir = directory tree to show. May be omitted, if from m@nt directory (.).
-k = display sizes in kb, and not 512-byte blocks.
-s = show summary only (if interested in size, nog)

Show filesystems, with disk usage:
df dir

dir = directory whose filesystem is to show. May be texit for all filesystems.

102 (C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

Egrep RE’s

Meaning

Quote the next metacharacter

Appendix: RE

Appendix: (basic) Regular Expressions

newline)

A | Match the beginning of the line Quantifiers
Match any character (except Meaning

Match the end of the line (or
before newline at the end)

Match preceding 0 or more times

Match preceding at least once

Alternation

0

Grouping

Character class

? Match preceding at most once
{n} Match preceding exactly n times
|{n,} | Match preceding at least n times
{m,n} | Match preceding m<..<n times

Matches are greedy unless ‘?’ is used following quantifier

(C) 2007 JL@HisOwn.Com

103

(C) 2007 JL@Hisown.con

Crash Course in UNIX and Linux Survival Skills

...If you liked this course, consider...

Protocols:

Networking Protocols — OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, Uail SCTP

Application Protocols — OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VolP:
In depth discussion of H.323, SIP, RTP/RTCP, dawthé packet level.

Linux;

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world ofhiux for the non-command line oriented
user. Basic skills and commands, work in shelldiregtion, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advarstégjects such as user administration,
software management, network service control, perdoce monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, includipgocesses, threads, IPC and
networking. Linux User experience requi

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.4 and 2.6, faogson design, architecture, writing
device drivers (character, block), performance raetsvork devices

Embedded Linux Kernel Programming:

Similar to the Linux Kernel programming course, tith a strong emphasis on
development on non-intel and/or tightly constraieetbedded platforms

Windows :

Windows Programming:

Windows Application Development, focusing on Praess Threads,
DLLs, Memory Management, and Winsock

Windows Networking Internals:

Detailed discussion of Networking Protocols: NetBISMB, CIFS,
DCE/RPC, Kerberos, NTLM, and networking architeetur

Security:
Cryptography:

From Basics to implementations in 5 days: foundeti@ymmetric Algorithms,
Asymmetric Algorithms, Hashes, and protocols. Deslggic and implementation

Application Security

Writing secure code — Dealing with Buffer Overflovpde, SQL and command

104 C ‘2007 JL@Hisown.con

