
Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com1

Jonathan Levin
Training & Consulting

V 1.01 – 5/23/2007

Crash Course in UNIX and Linux Survival Skills

Table of Contents

3I. Introduction

10II. The UNIX CLI

22III. X-Windows

29IV. VI

35V. The FileSystem

55VI. Processes

71VII. Filters

90VIII. Basic Scripting

97Appendix

“Cheat Sheet” (Quick Reference)

Regular Expressions

(C) 2007 JL@Hisown.com2

About the Author:

Jonathan Levin specializes in training and consulting services. This, and many other
training materials, are created and constantly updated to reflect the ever changing
environment of the IT industry.

To report errata, or for more details, feel free to email JL@HisOwn.com

This material is protected under copyright laws. Un authorized reproduction, alteration, use in part or in whole is prohibited,
without express permission from the author

Crash Course in UNIX and Linux Survival Skills

UNIX started out as a single user operating system for the PDP 7/11 platforms, in Bell Labs. Its name was
coined as a pun on Multics, which was a common OS.

Introduction

(C) 2007 JL@Hisown.com3

coined as a pun on Multics, which was a common OS.

UNIX has since evolved immensely: the first major breakthrough was introduced in 1975 – the OS was
rewritten in C – allowing for portability between platforms. The original C source has since then been licensed
by IBM, HP, SGI, and other vendors in their own interpretations of the OS. SCO currently holds the rights to
the UNIX source (and was threatening to sue IBM for letting Linux in on it…).

Crash Course in UNIX and Linux Survival Skills

There is no SINGLE UNIX. There are plenty of flavors, however.

Introduction

(C) 2007 JL@Hisown.com4

Linux is the most common UNIX nowadays, owing to its open sourced and free nature (although
(Free|Open|Net)BSD are also open, they are hardly as popular). The GNU utilities (also open source)

The following table shows a partial listing of UNIX flavors:

StandardProcessorVersionsBrandVendor

System VSparc/x862.5,2.6,7,8,9,10SunOS (Solaris)Sun

System V +
POSIX

PA-RISC10.20, 11, 11.11,
11.11i, 11.23

HP-UXHP

OSF + SysVAlpha3 (Ultrix)

4 (Digital UNIX)

5 Tru64

Keeps changing..Digital

OSF + Sys VMIPS5.3, 6.2,6.4,6.5.xIRIXSGI

BSDRS6000 +4.0-4.3, 5.0.. 5.3AIXIBM

Hybrid/GNUAnyKernels 2.4, 2.6RedHat, SUSE..Linux

Crash Course in UNIX and Linux Survival Skills

Despite the multiple flavors of UNIX, they all have a rather large common denominator:

Introduction

(C) 2007 JL@Hisown.com5

The same basic user model– out of box, all UNIX types have the same administrator usernames,
such as “root”, “bin”, “adm”, “lp”. The user “database” is identical or similar in all.

A common logical filesystem structure– All UNIX flavors use the same logical filesystem
structure, with the same directory names and functions – like “bin”, “sbin”, “lib”, “etc”, “tmp”.. File
handling commands, like “cp”, “mv”, “ls”, are also common.

A common permission/security model on the filesystem – The file-security commands are also
similar – and are referred to as the “holy trinity” of chmod/chown/chgrp. Although this basic model
has been extended in several UNIX types, as it is extremely limited.

The same concept of file driven I/O, even for hardware – In UNIX, everythingis a file. Even
hardware devices can be opened and accessed just like files.

The same core commands and utilities– as stated above, file handling and security commands are
identical or similar. Process handling commands, and the entire CLI is common enough for one
UNIX denizen to migrate to a new environment without noticing any impediment.

Crash Course in UNIX and Linux Survival Skills

However, UNIX flavors still differ substantially. Fortunately, it’s the advanced functionality, such as system-
administration or hardware management commands that get very specific. So we’re not likely to see too many

Introduction

(C) 2007 JL@Hisown.com6

administration or hardware management commands that get very specific. So we’re not likely to see too many
of these differences here.

Crash Course in UNIX and Linux Survival Skills

With all the variants of UNIX out there, the best way to find out what system you’re on is the “uname”
command – and this will therefore be the first command presented here.

Introduction

(C) 2007 JL@Hisown.com7

command – and this will therefore be the first command presented here.

As a typical UNIX command, we can use uname to demonstrate the use of switches. Notice this output from a
Linux system, where the switches were employed one by one:

jormungandr (~) $$$$ uname uname uname uname ----nnnn
jormungandrjormungandrjormungandrjormungandr
jormungandr (~) $ uname uname uname uname ----ssss
LinuxLinuxLinuxLinux
jormungandr (~) $ uname uname uname uname ----mmmm
iiii686686686686
jormungandr (~) $ uname uname uname uname ----iiii
iiii386386386386
jormungandr (~) $ uname uname uname uname ----pppp
iiii686686686686
jormungandr (~) $ uname uname uname uname ----oooo
GNU/LinuxGNU/LinuxGNU/LinuxGNU/Linux
jormungandr (~) $ uname uname uname uname ----vvvv
####1 1 1 1 SMP Tue May SMP Tue May SMP Tue May SMP Tue May 2 192 192 192 19::::32323232::::10 10 10 10 EDT EDT EDT EDT 2006200620062006
jormungandr (~) $ uname uname uname uname ----rrrr
2222....6666....16161616----1111....2107210721072107_FC_FC_FC_FC4444smpsmpsmpsmp
jormungandr (~) $ uname uname uname uname ----aaaa
Linux jormungandr Linux jormungandr Linux jormungandr Linux jormungandr 2222....6666....16161616----1111....2107210721072107_FC_FC_FC_FC4444smp #smp #smp #smp #1 1 1 1 SMP Tue May SMP Tue May SMP Tue May SMP Tue May 2 192 192 192 19::::32323232::::10 10 10 10 EDT EDT EDT EDT 2006 2006 2006 2006 iiii686 686 686 686
iiii686 686 686 686 iiii386 386 386 386 GNU/LinuxGNU/LinuxGNU/LinuxGNU/Linux
jormungandr (~) $ uname uname uname uname ----nsmpoivrnsmpoivrnsmpoivrnsmpoivr
Linux jormungandr Linux jormungandr Linux jormungandr Linux jormungandr 2222....6666....16161616----1111....2107210721072107_FC_FC_FC_FC4444smp #smp #smp #smp #1 1 1 1 SMP Tue May SMP Tue May SMP Tue May SMP Tue May 2 192 192 192 19::::32323232::::10 10 10 10 EDT EDT EDT EDT 2006 2006 2006 2006 iiii686 686 686 686
iiii686 686 686 686 iiii386 386 386 386 GNU/LinuxGNU/LinuxGNU/LinuxGNU/Linux

Crash Course in UNIX and Linux Survival Skills

Uname exists on all UNIX platforms, regardless of race, color or creed. Its output, however, is different, and
corresponds to the system in question. On Solaris, the same command would get different results.

Notice the output is different, and Solaris also supports a different switch (-X) that Linux, for example, does
not. But the general gist of the command is pretty much the same.

Introduction

Surtr (~) $$$$ uname uname uname uname ----aaaa
uname -a SunOS sng 5.8 Generic_108528-21 sun4u sparc SUNW,Ultra-Enterprise-10000

Surtr (~) $ uname -X
System = SunOS
Node = Surtr
Release = 5.8
KernelID = Generic_108528-21
Machine = sun4u
BusType =
Serial =
Users =
OEM# = 0
Origin# = 1
NumCPU = 4

(C) 2007 JL@Hisown.com8

Crash Course in UNIX and Linux Survival Skills

UNIX is, to say the least, not very user friendly. Although most avid UNIX-philes will tell you it is – but it’s
picky as to who its friends are.

Introduction

(C) 2007 JL@Hisown.com9

picky as to who its friends are.

The UNIX idea of “help” is in the “man” command – or, in UNIXese – RTFM. The entire manual (a hefty
tome) is available (in text form, of course), and “man” enables you to view whatever command is of interest.

UNIX Manuals are divided into 8 sections:

DescriptionSection

User commands – Most of what you want is here1

System calls – For lower-level developers only2

Programming Interfaces - Most of what developers want is here3

File Formats / Device Drivers / Configuration (varies)4

File Formats (Configuration Files)5

Games (Yep. You read right. But usually this section is empty..)6

Device Drivers (don’t go here)7

System Administration commands8 (or 1(M))

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com10

Crash Course in UNIX and Linux Survival Skills

The command environment you are in, when you type in the various commands, is called a shell. This is a
command interpreter, not unlike any MS-DOS command prompt – but FAR stronger in features, as we will

The UNIX CLI

(C) 2007 JL@Hisown.com11

command interpreter, not unlike any MS-DOS command prompt – but FAR stronger in features, as we will
see later. Each such “shell” usually runs in the context of a “terminal” – a relic from the olden days when
UNIX had many dumb terminals connected to one large server machine.

To see the “terminals” in action, one uses the “tty” command. This simple command merely returns the
terminal identifier. Terminals are generally classified as physical (/dev/tty..), or virtual, or pseudo (/dev/pts/..).

Crash Course in UNIX and Linux Survival Skills

Terminals also have particular “capabilities” – such as colors, cursor keys, and other features. Not all
terminals share the same features.

The UNIX CLI

(C) 2007 JL@Hisown.com12

terminals share the same features.

UNIX maintains a “Terminal Capabilities” database, in a file (called /etc/termcap) as well as specific terminal
entries in a directory (/usr/share/terminfo). These enable the various UNIX commands to remain agnostic to
the type of Terminal used, as the system “translates” capabilties such as full screen, color codes, etc without
the need to code them specifically into each and every terminal.

As the following example shows, setting the terminal makes a difference for commands such as “vi” – the
visual editor, that require “advanced” capabilities such as full screen.

Kraken$ export TERM=xxx
zsh: can't find terminal definition for xx

Kraken$ vi
E558: Terminal entry not found in terminfo
'xx' not known. Available builtin terminals are:
builtin_ansi
builtin_xterm
builtin_iris-ansi
builtin_dumb

defaulting to 'ansi'

Crash Course in UNIX and Linux Survival Skills

The ‘stty’ command is one of the least understood and less used commands in the UNIX environment – but
sometimes it can be a lifesaver.

The UNIX CLI

(C) 2007 JL@Hisown.com13

sometimes it can be a lifesaver.

Kraken$ stty –a
speed 38400 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W;
lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk brkint ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany imaxbel
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

Kraken$ stty erase ^H

Crash Course in UNIX and Linux Survival Skills

The Shell is the single most important command in UNIX, since it maintains the user session and environment,
and launches other commands. However, there are numerous types of shells, and your local UNIX or Linux

The UNIX CLI

(C) 2007 JL@Hisown.com14

and launches other commands. However, there are numerous types of shells, and your local UNIX or Linux
might vary.

All UNIX flavors come with three installed shells: sh, ksh, and csh. Non-Standard shells can be found that
extend those three, and all fall into the two basic categories shown on the slides: The one started by “sh” (The
Bourne Shell), and the one started by “csh” (The C-Shell).

The Bourne shell, named after its inventor, is the most basic and limited of all the shells. Chances you’ll
encounter it directly are fairly few, since it has been superseded by the open-source yet now almost standard
BASH, or “Bourne Again” shell (a clever pun on the name of the original). Bourne shell itself is extremely
restricted and with very little functionality, but it is still used as a common denominator for scripts. BASH,
however is very common, and has been standardized as the default shell of choice in Linux, as well as newer
versions of Solaris.

The Korn shell is a stronger version of Bourne, with enhanced syntax that is especially suited for scripts. It’s
still a VERY inhospitable shell to be in, yet it does have significant advantages, even over the newer shells,
when it comes to command or “job” control, as we will see later.

Zsh is the author’s favorite. Not always installed by default, it still is part of any Linux (or later Solaris)
distribution, with very nifty enhancements not available anywhere else.

Csh, and its successor, tcsh, are named after the syntax they use – like the programming language of C, which
is totally incompatible with those of the Bourne/Korn variety. The syntax differences will be demonstrated as
we go along. One difference (‘export’ in sh/ksh vs. “setenv” in c/tc) was already shown.

Crash Course in UNIX and Linux Survival Skills

Command aliases are a very simple yet powerful mechanism to customize the shell. They enable to create
your own custom commands, which are merely syntactic sugar for the actual commands in question. The

The UNIX CLI

(C) 2007 JL@Hisown.com15

your own custom commands, which are merely syntactic sugar for the actual commands in question. The
syntax in all shells is roughly the same, with the main difference being the use (or lack) of an equals (=) sign.
The alias usually replaces the command, and not the arguments. TCSH, however, supports aliases which are
more powerful, enabling alias substitution as well.

We already saw that TERM environment variable. But it’s not the only one. We have several important
variables maintained by the shell:

UseVariable

Set to the home directory. In ‘cd’ callable as ~, or with no argumentsHOME

In sh/ksh/bash: $PATH, with : separators between directories

In c/tcsh: $path (as an array, in parentheses with spaces separating

PATH

Same as PATH, but for library loading (wicked useful, but advanced)LD_LIBRARY_PATH

Controls Terminal ID for full screen/color-enabled applicationsTERM

Semi standard – sometimes $shell, instead. Not to be relied onSHELL

Your shell command prompt. In tcsh – prompt. In KSH – PS1PROMPT

The previous working directory. In ‘cd’ also callable as “-”OLDPWD

Automatically set to what the present working directory isPWD

MAY be set by your login script to your usernameUSER

Zsh specific: allows you to watch for other users’ logins to systemWATCH

Crash Course in UNIX and Linux Survival Skills

Filename completion is the same idea as you have in DOS (using DOSKEY) or NT/2000 (using CMD’s
CompletionChar registry key). Zsh takes it to an entirely new level by programmatically enabling the

The UNIX CLI

(C) 2007 JL@Hisown.com16

CompletionChar registry key). Zsh takes it to an entirely new level by programmatically enabling the
completion of command line switches (which are command specific) and not just arguments (as filenames)

Crash Course in UNIX and Linux Survival Skills

The above characters are common to all, or most shells.

The UNIX CLI

(C) 2007 JL@Hisown.com17

The following example shows some of the “quoting”. Background and history are shown in the exercise.

Kraken$ echo $TERM
linux

Kraken$ echo “$TERM”
linux
Kraken$ echo ‘$TERM’
TERM
Kraken$ pwd ; (cd /etc ; pwd) ; pwd
/
/etc
/

Crash Course in UNIX and Linux Survival Skills

Command correction is VERY useful, especially in your early days of the UNIX experience. It’s one good
reason to forsake bash in favor of the better, but non-standard zsh. It’s not perfect, but zsh has some pretty

The UNIX CLI

(C) 2007 JL@Hisown.com18

reason to forsake bash in favor of the better, but non-standard zsh. It’s not perfect, but zsh has some pretty
smart algorithms for deducing the right command for the right time.

Crash Course in UNIX and Linux Survival Skills

The UNIX Command line environment

1. Getting to know the shell differences

If available, go into ksh, by simply typing “ksh”. Type a few commands, then press the UP

arrow key, as if to recall a previous command. What happens?

__

To fix this, type “set –o vi”. Now use the arrow keys (or press ESCAPE and use ‘j/k’ for

up/down, and ‘h/l’ for left/right) to recall previous commands. To edit a recalled command

line, use ‘a’, ‘x’, ‘i’ and ‘r’. What is the effect of pressing these keys?

__

__

Use the “pwd” command to see what directory you are currently in. Then try “echo $PWD”.

Both commands show the same output. What is the difference between them?

The UNIX CLI - Exercises

(C) 2007 JL@Hisown.com19

__

__

Next, set the prompt. Type the following string: export PSexport PSexport PSexport PS1111=“$PWD >” =“$PWD >” =“$PWD >” =“$PWD >” (note: double

quotes) what happens. What is this useful for?

__

Next, ‘cd’ to a different directory. You’ll note the prompt hasn’t changed, and is “stuck” in

the previous directory. Why?

__

__

Repeat the prompt setting, this type using single quotes instead of double quotes. What is the

effect you see? Why?

__

Repeat the above procedure for “tcsh” and “zsh”. What are the differences you see?

Crash Course in UNIX and Linux Survival Skills

The UNIX Command line environment – Cont.

2. Job Control

This exercise demonstrates the versatility of command control, called “jobs” in the various

Shells.

To begin, run the “man” command, or “vi”, or any command that requires a full screen.

Then, while it’s running, press CTRL-Z. What happens?

__

Next, use the “jobs” command. What does the output tell you?

__

The command you have pressed CTRL-Z on is now suspended. This means that it is

The UNIX CLI - Exercises

(C) 2007 JL@Hisown.com20

The command you have pressed CTRL-Z on is now suspended. This means that it is

“frozen”, and you can now type other commands. Repeat the previous operation with

some other command, and likewise suspend it. Then use ‘jobs’.

__

To return to the suspended jobs, use “fg %#”, replacing “#” with the job number.

__

Now try the command ‘ls –lR /’. This is likely to start a listing of all the files on the

filesystem – a very long listing, at that. Press CTRL-Z, and use the “fg” trick to resume the

job.

Try the same operations, using “&” at the end of the command name. “&” sends the

command to the background, and enables it to run concurrently. What commands fail the

“&” and do not run in the background?

__

__

Crash Course in UNIX and Linux Survival Skills

The UNIX Command line environment – Cont.

3. Introducing “screen”

Type the “screen” command. What happens?

__

Not too impressive, is it? Type a few commands, or even enter a full screen application like
“vi”. Now, press CTRL-A, followed by ‘c’. What happens? Try CTRL-A again, followed
by SPACE. Can you explain?

__

__

Press CTRL-A followed by ‘?’ to get the help, and find out what key sequence you would

need to “lock” the screen.

The UNIX CLI - Exercises

(C) 2007 JL@Hisown.com21

__

Next, press CTRL-A followed by “D”. You should get a message saying “[Detached]”.

Then, run “screen” again with the “-r” switch. Explain what happens.

__

Extra: start a different session from another terminal, while the first one is still in “screen”.

Then type “screen –r –D”. What happens?

__

__

Crash Course in UNIX and Linux Survival Skills X-Windows

(C) 2007 JL@Hisown.com22

Crash Course in UNIX and Linux Survival Skills

Long before Microsoft Windows, there was X. As Wikipedia points out:

X-Windows

(C) 2007 JL@Hisown.com23

“X derives its name as a successor to a pre-1983 window system called W(the letter X directly following W
in the Latin alphabet). W ran under the Voperating system. W used a network protocol supporting terminal
and graphics windows, the server maintaining display lists. “

Other sources put the X in X-Windows for Xerox. Anyway, X is a truly powerful user interface, and is in fact
the first user interface to support “Windows”. Well before Apple “borrowed” it for its own, after which
Microsoft “re-borrowed” from Apple.

Crash Course in UNIX and Linux Survival Skills

A fundamental concept in X-Windows is the “Display”. Programs can redirect their GUI to a display (usually
by means of a command line argument (-display) or by a corresponding environment variable. The display is

X-Windows

(C) 2007 JL@Hisown.com24

by means of a command line argument (-display) or by a corresponding environment variable. The display is
also called the X-Server. Note roles here are somewhat counterintuitive to traditional “Client/Server”.

Note the large number of ports used (all TCP). X-Windows is rather hard to configure and secure from a
network perspective.

Crash Course in UNIX and Linux Survival Skills

As stated, a very cool feature of X-Windows, still unmatched by Microsoft Terminal Server, is the ability to
run just a single windowed application remotely, and not the entire desktop. In fact, an X-Windows session

X-Windows

(C) 2007 JL@Hisown.com25

run just a single windowed application remotely, and not the entire desktop. In fact, an X-Windows session
may host multiple applications from foreign clients. As windows are redirected, only their client area is
passed. The rendering of the window frame and caption are left for a specific application on the server, called
a Window Manager.

Many such window managers exist. TWM, Motif, AfterStep, FVWM, and others. Linux provides Metacity
(for GNOME) or KDE.

Crash Course in UNIX and Linux Survival Skills

PrefDM is actually a redirector to either GDM (the GNOME Display Manager) or KDM (The KDE Display
Manager)

X-Windows

(C) 2007 JL@Hisown.com26

Manager)

Running in DM mode also allows other clients (most notably X-Terminals) to login graphically. The clients
find the server by means of XDMCP – a (usually) broadcast based protocol.

Crash Course in UNIX and Linux Survival Skills

X will not work if any firewalls filter out port 6000. To make sure that an X Session can be established, try to
telnet to port 6000 manually first.

X-Windows

(C) 2007 JL@Hisown.com27

telnet to port 6000 manually first.

Important Note: Sometimes commands such as “netstat” will report connectivity and that port 6000 is
listening – but X will not function. This is almost certainly because of the IPTables firewall service, or some
other Kernel Level filter. In the case of IPTables, this could be disabled with /etc/init.d/iptables stop –
although a better solution would be to add a rule to allow X-based traffic (ports 6000-6030, and port 7000).

Crash Course in UNIX and Linux Survival Skills

X-Windows

1. Trying X-Windows

For this exercise, you will need to work with two computers. One (remotely) a client, and
one (locally) a server. You can work on the remote client over SSH – so you don’t really
need to tie down two computers.

I. Login remotely to the client computer. Start an xterm remotely by means of the
following two commands, illustrated in the slides:

1)________________________________ 2)____________________________

What happens? __

II. How would you enable X to deal with the error message you’ve encountered?

__

X-Windows - Exercises

(C) 2007 JL@Hisown.com28

III. With the session active, run “netstat –n” on both machines. What do you see?

__

__

IV. Repeat the exercise with a tcsh environment instead of BASH/ZSH. What is the major
change required?

__

__

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com29

Crash Course in UNIX and Linux Survival Skills

Welcome to what just might be your worst nightmare – The wonderful “Visual Editor” – and the default editor
in UNIX and Linux.

(C) 2007 JL@Hisown.com30

in UNIX and Linux.

This “chapter” is going to be only a few pages in length – because it is primarily through the fingers that one
learns how to use vi.

Crash Course in UNIX and Linux Survival Skills

Tip: ALWAYS hit ESC-twice if you “get lost”. That will get you into Navigation mode, and a comforting
“beep” will tell you that you’re “safe”.

(C) 2007 JL@Hisown.com31

“beep” will tell you that you’re “safe”.

Tip II: Careful with CAPS LOCK! This would CHANGE the meaning of your keys, therefore commands, and
VI will go “crazy” on you. Especially when using h/j/k/l to navigate.. And they become H/J/K/L!

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com32

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com33

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com34

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com35

Crash Course in UNIX and Linux Survival Skills

All UN*X versions share the same basic file system structure:

The FileSystem

(C) 2007 JL@Hisown.com36

- Files and folders are all under one root (/)

- Folders may either be local directories, or remote (NFS) mount points

(much like windows network drives)

- The standard directories all have a well-known purpose.

Used for..Directory

“Binaries” – i.e. executables, and standard commands (manual
section: 1). This is where the core UNIX binaries was originally
found: The basic subset of commands that UNIX cannot do
command.

/bin

“System Binaries” – executables that are used almost
exclusively by root for system administration (those in manual
section: 1M or 8). “Ifconfig” (the network interface configuration) is
usually found here. /sbin is not in the normal user’s path setting,
so unless they specifically seek here, they’re not likely to “see”
any of these commands as available.

/sbin

“Libraries” – UNIX, much like windows, has dynamic link
libraries. Only here they’re called “Shared Objects”, and are
marked with a “.so” extension. They are functionally equivalent to
DLLs.

/lib

Crash Course in UNIX and Linux Survival Skills

Used for..Directory

“User” – This directory is used for 3rd party programs and
additional software. (Think: “Program Files”). This directory
contains, among others, a structure mirroring /bin/sbin/lib. The
original idea was, that additional software would go here, so as to
reduce chances of conflict (or accidents) with the core UNIX files.
Over the years, however, many UN*X blurred the distinction
between /usr/bin and /bin, to the point of actually linking them
together.

By convention, new software is usually installed either in “/opt”, or
in “/usr/local/bin”, and the proper path modifications are performed
in the users’ login scripts.

/usr

“Various” – This directory was used for various data files/var

“Temporary” – This directory is used for temporary files. It has
two important features:

- World writable: Any user can read and write freely in this
directory – not just root. Non root users, in fact, may find this is
the ONLY directory they can write to, unless root has designated
a home directory for them.

- Not persistent across reboot: /tmp is not guaranteed to
“survive” a system reboot, and is likely to be cleared. This led
many UNIX vendors to implement /tmp as a “swap filesystem” –

/tmp

(C) 2007 JL@Hisown.com37

many UNIX vendors to implement /tmp as a “swap filesystem” –
that is, in virtual memory. This makes sense because /tmp is
frequently accessed – thereby improving overall system
performance. Since virtual memory is cleared during reboot, this
also achieves the “bonus” of starting with a clear /tmp every time.

“Et Cetera” – Latin for “all the rest”, this directory started its life
as a dump for “everything else” that couldn’t find a place in other
directories. It is used primarily, however, for configuration files.
This is the closest to a Registry UNIX will ever get.

/etc

Crash Course in UNIX and Linux Survival Skills

A key concept in UNIX filesystems is “mounting” – The method by means of which additional filesystems
plug in to the existing filesystem hierarchy. “Mounting” is connecting a filesystem to an existing directory –

The FileSystem

(C) 2007 JL@Hisown.com38

plug in to the existing filesystem hierarchy. “Mounting” is connecting a filesystem to an existing directory –
that is otherwise normal, but is redefined as a “mount point”. CD’ing to that directory will transparently move
the user or process to the filesystem. Much like a “C:” “D:” would move in Windows.

Mounted filesystems are generally physical devices – partitions on disks. They can be easily identified
because they read /dev/… for the device, usually /dev/hd* /dev/sd* or /dev/dsk… However, with the same
ease and transparency, UNIX supports a distributed filesystem called “NFS” (The Network FileSystem), and
Linux in particular also natively supports SMB – The Server Message Block that is the groundwork for
Windows’ filesharing (Think \\SERVER\SHARE).

When a directory is used as a “mount point”, any files that it might actually contain are hidden. That is,
hidden, not erased. Once the filesystem is unmounted, the files “magically” reappear.

Crash Course in UNIX and Linux Survival Skills

The “mount” command is used – not surprisingly – to achieve the mount operation. This command can only
execute and actually mount a filesystem as the root user or administrator, and mounting is beyond our scope.

The FileSystem

(C) 2007 JL@Hisown.com39

execute and actually mount a filesystem as the root user or administrator, and mounting is beyond our scope.
But it still proves to be a useful command to see what filesystems are mounted, on which mount points.

Similarly, “df” shows a list of mounted filesystems, along with their usage. Notice that this shows less
filesystems than “mount”, as it only related to physical devices:

Kraken$ mount
/dev/sda/dev/sda/dev/sda/dev/sda4 4 4 4 on / type exton / type exton / type exton / type ext3 3 3 3 (rw)(rw)(rw)(rw)
/dev/proc on /proc type proc (rw)/dev/proc on /proc type proc (rw)/dev/proc on /proc type proc (rw)/dev/proc on /proc type proc (rw)
/dev/sys on /sys type sysfs (rw)/dev/sys on /sys type sysfs (rw)/dev/sys on /sys type sysfs (rw)/dev/sys on /sys type sysfs (rw)
/dev/devpts on /dev/pts type devpts (rw,gid=/dev/devpts on /dev/pts type devpts (rw,gid=/dev/devpts on /dev/pts type devpts (rw,gid=/dev/devpts on /dev/pts type devpts (rw,gid=5555,mode=,mode=,mode=,mode=620620620620))))
/dev/sda/dev/sda/dev/sda/dev/sda1 1 1 1 on /boot type exton /boot type exton /boot type exton /boot type ext3 3 3 3 (rw)(rw)(rw)(rw)
/dev/shm on /dev/shm type tmpfs (rw,noexec,nosuid)/dev/shm on /dev/shm type tmpfs (rw,noexec,nosuid)/dev/shm on /dev/shm type tmpfs (rw,noexec,nosuid)/dev/shm on /dev/shm type tmpfs (rw,noexec,nosuid)
/dev/sda/dev/sda/dev/sda/dev/sda3 3 3 3 on /tmp type exton /tmp type exton /tmp type exton /tmp type ext3 3 3 3 (rw,noexec,nosuid,loop=/dev/loop(rw,noexec,nosuid,loop=/dev/loop(rw,noexec,nosuid,loop=/dev/loop(rw,noexec,nosuid,loop=/dev/loop0000))))
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
Jormungand:/tmp on /jormy type nfs (rw)Jormungand:/tmp on /jormy type nfs (rw)Jormungand:/tmp on /jormy type nfs (rw)Jormungand:/tmp on /jormy type nfs (rw)

Kraken$ df
Filesystem Filesystem Filesystem Filesystem 1111KKKK----blocks Used Available Use% Mounted onblocks Used Available Use% Mounted onblocks Used Available Use% Mounted onblocks Used Available Use% Mounted on
/dev/sdadev/sdadev/sdadev/sda4 147237696 49276096 90361652 364 147237696 49276096 90361652 364 147237696 49276096 90361652 364 147237696 49276096 90361652 36% /% /% /% /
/dev/sdadev/sdadev/sdadev/sda1 202220 78350 113430 411 202220 78350 113430 411 202220 78350 113430 411 202220 78350 113430 41% /boot% /boot% /boot% /boot
/dev/shm dev/shm dev/shm dev/shm 511304 0 511304 0511304 0 511304 0511304 0 511304 0511304 0 511304 0% /dev/shm% /dev/shm% /dev/shm% /dev/shm
/dev/sdadev/sdadev/sdadev/sda3 1976268 20800 1853456 23 1976268 20800 1853456 23 1976268 20800 1853456 23 1976268 20800 1853456 2% /tmp% /tmp% /tmp% /tmp
Jorumngand:/tmp Jorumngand:/tmp Jorumngand:/tmp Jorumngand:/tmp 143490833 481023331 90519102 35143490833 481023331 90519102 35143490833 481023331 90519102 35143490833 481023331 90519102 35% /Jormy% /Jormy% /Jormy% /Jormy

Crash Course in UNIX and Linux Survival Skills

‘ls’ is the most well known and one of the most versatile UNIX commands. It lists files and/or directories,
with a surprsing amount of switches – nearly all letters of the alphabet are supported (and case sensitive!)

The FileSystem

(C) 2007 JL@Hisown.com40

with a surprsing amount of switches – nearly all letters of the alphabet are supported (and case sensitive!)

In Linux, a VERY common option (often aliased) is ‘--color=tty’. While this option is far from the standard, it
gives the very noticeable effect of file listings in color.

Unlike DOS, UNIX keeps three times for each file:

Access Time: Time of last access, read or write, unless the filesystem is mounted with “noatime” option

Creation Time: Time of file creation.

Modification Time: Time of last write operation.

These times, however, can and often are manipulated, using the ‘touch’ command. Touch may change any of
the timestamps by –a –c or –m, respecively.

Crash Course in UNIX and Linux Survival Skills

The above table shows the various types of files in UNIX and Linux, as shown by the ‘ls –l’ and ‘ls –F’
commands.

(C) 2007 JL@Hisown.com41

commands.

The important thing to remember is that EVERYTHING is represented as a file. (including devices – more on
that later). Pipes and Sockets are the UNIX IPC mechanisms.

Crash Course in UNIX and Linux Survival Skills

‘cp’, ‘mv’ and ‘rm’ are three of the most commonly used commands, as they enable the moving, renaming or
copying of files around the UNIX filesystem. The syntax is very similar, as shown above. Their usage is

The FileSystem

(C) 2007 JL@Hisown.com42

copying of files around the UNIX filesystem. The syntax is very similar, as shown above. Their usage is
straightforward.

Note: for novice types, consider aliasing “cp” , ”rm” and “mv” with their safer “-i” switch… especially
rm, especially if you run as root!

Note II: Be CAREFUL with Recursive use of ‘rm’, especially with the “*” wild card. “rm –fR *”, a
common “deltree” command, can wipe out your entire filesystems (ALL of them) if executed by mistake from
the root!

Crash Course in UNIX and Linux Survival Skills

The following table summarizes permissions, in their octal. As the table shows, it’s much easier to get used to
the octal notation, rather than work with –r, -w, and –x.

(C) 2007 JL@Hisown.com43

the octal notation, rather than work with –r, -w, and –x.

LS displayableOctalBits

--- (= or -rwx)0000

--x (=x or -rw+x)1001

-w- (=w or -rx,+w)2010

-wx (=wx or -r,+wx)3011

r-- (=r, or +r,-wx)4100

r-x (=rx, or +rx,-w)5101

rw- (=rw, or +rw,-x)6110

rwx (=rwx, or +rwx)7111

Crash Course in UNIX and Linux Survival Skills

chmod (Change Mode) changes permissions,

The FileSystem

(C) 2007 JL@Hisown.com44

chown (Change Owner) changes the owner of a file,

chgrp (Change group) the owning group.

Crash Course in UNIX and Linux Survival Skills

UNIX supports two types of link files – and the two are totally unrelated.

The FileSystem

(C) 2007 JL@Hisown.com45

Both are created using ln(1). The default are hard links. For soft/symbolic, use “-s”.

Hard Links: Another pointer to the file.

- Linked at the INODE level: this is NOT a separate file, but, rather – a separate name for the same file.

- Appear as same file. Link count in ls –l reveals hard link. find –inum finds all links.

- Cannot traverse filesystems, as inodes are only unique per filesystem.

- If target is deleted, contents unscathed

Symbolic Links: Another name to the name of the file.

- Two DIFFERENT files – the link is a NEW file, whose contents are merely the name of the target.

- Appear with a “@” in ls –F, and “l” in file type, in ls -l

- Can traverse filesystems, as name is resolved again each time.

- If target is deleted, link is broken.

Crash Course in UNIX and Linux Survival Skills

‘Find’ is a highly useful command to locate files on the filesystem according to a host of criteria.

The FileSystem

(C) 2007 JL@Hisown.com46

Meaningcondition

Filename has inode number ###. Useful for finding hard links-inum ###

Find files with name ____. Specify wildcards * and ? in quotes-name ___

Find files with size … . Use + to specify minimum, - for maximum.

Also use G, M, K for Gigabytes, Megabytes, Kilbobytes

-size ….

Find files with exact permissions … or also with permissions +-perm ….

Find files of type t (f = file, d = directory, l = symbolic link…)-type t

Find files that are newer or older than file.-newer/-older file

Find files with access/creation/modification time of n days ago

Also: use +n or –n for minimum/maximum.

-atime/-mtime/-ctime n

Find files that are owned by user or uid or group or gid-user/-uid/-group/-gid

Crash Course in UNIX and Linux Survival Skills

Once files are found, one of several actions may be employed:

MeaningAction

Execute “rm” on the file, deleting it. (dangerous, but useful)-delete

Execute any command, once per file found. Use {} to replace the
filename in the command. (In most shells, use \\\\{{{{\\\\} } } } \\\\;;;;)!

-exec …..

Same as –exec, but prompt each time on command-ok

Print name of file(s) found to file outfile-fprint outfile

Print names of file(s) found to stdout (this is the default action)-print

The FileSystem

(C) 2007 JL@Hisown.com47

Crash Course in UNIX and Linux Survival Skills

UNIX provides useful utilities to compare files and find differences.

The FileSystem

(C) 2007 JL@Hisown.com48

Comm, cmp, and diff are similar, but sufficiently different to serve different purposes.

Diff is especially useful, since its output may be used by another utility, patch. Minor changes in huge files,
like the Linux Kernel sources, come out in patch form, so they can easily be applied on a continuous basis.

Crash Course in UNIX and Linux Survival Skills

UNIX has a clear distinction between root, UID 0, the omnipotent super-user,

The FileSystem

(C) 2007 JL@Hisown.com49

UNIX has a clear distinction between root, UID 0, the omnipotent super-user,

And all the other users, with a UID > 0, who can do virtually nothing.

However, to change one’s password involves a write operation to the /etc/passwd

and/or /etc/shadow files… which can only be written to by the root user.

The same goes for scheduling jobs (at, cron), using low level or raw sockets (ping, traceroute), and
other commands.

UNIX supplies a ‘workaround’ mechanism, in the form of SetUID.

Crash Course in UNIX and Linux Survival Skills

To make a program setUID, use:

The FileSystem

(C) 2007 JL@Hisown.com50

To make a program setUID, use:

chmod u+s program_name

or use a leading ‘4’ in the octal mode, e.g.

chmod 4755 program_name

SetGID, that is, becoming a member of the group of owners upon execution,

is also possible, though less used.

chmod g+s program_name

or use a leading ‘2’ in the octal mode, e.g.

chmod 2755 program_name

Crash Course in UNIX and Linux Survival Skills

Naturally, SetUID programs are potentially disastrous.. If someone could execute a shell

The FileSystem

(C) 2007 JL@Hisown.com51

Naturally, SetUID programs are potentially disastrous.. If someone could execute a shell

when under a setUID, he could get an instant “root-shell”, in which any command issued would be
effectively a root-issued command.

Find / -user root –perm +04000 –print

finds SetUID commands

Crash Course in UNIX and Linux Survival Skills

Linux supports the UNIX concept of a “Device”. All input/output to devices works as it normally would with

The FileSystem

(C) 2007 JL@Hisown.com52

a file, only the file – while present in the filesystem - is not a normal file on the disk, but rather –an interface
to the device driver.

There are three types of devices, and we will deal with them all:

- Character Devices: Are devices which perform I/O on a “character” or unbuffered basis. Most devices in
the system are indeed implemented as character devices. These include the memory, terminals, I/O ports,
keyboard, mouse, and others

- Block Devices: Are devices which perform their I/O on a “block” basis – Blocks are usually 512-byte
chunks, and are buffered by the system’s buffer cache. Block devices may further have filesystems built on
top of them. Common block devices are the hard disks and mass storage devices.

- Network Devices: Are a third class of devices – implementing the network interfaces.

Character and block devices are created in the filesystem using the “mknod” command. e.g:

mknod /dev/mydev c # mknod /dev/mydev c # mknod /dev/mydev c # mknod /dev/mydev c 254 0254 0254 0254 0

To create a device called /dev/mydev, with major number 254 and minor number 0.

The MAJOR is the # of device driver registered in the Kernel

The MINOR is the # of device registered in the driver.

To see a device driver listing, cat /proc/devices. Common devices are listed in the following table:

Crash Course in UNIX and Linux Survival Skills

MinorMajorDescriptionDevice Name

11Physical Memorymem

21Kernel Memorykmem

31“Black Hole”null

51Infinite stream of “\0”szero

81PRNG (blocking)random

91PRNG (non-blocking)urandom

04Current Virtual Consoletty0

1..64Virtual Consoles (Alt-F1..F6)tty1..tty6

64..674COM1..COM4ttyS0..3

05Current (active) TTYtty0

15Physical Consoleconsole

----Process File Descriptors.
SymLinked to /proc/self/fd

fd,

----Process descriptors. /dev/fd/0..2stdin,stdout, stderr

The FileSystem

(C) 2007 JL@Hisown.com53

Crash Course in UNIX and Linux Survival Skills

Filesystem

1. File system operations on directories

For this exercise to work, make sure the /tmp directory has the permissions drwxrwxrwx.

Now, login as one user, cd to /tmp. and create a file with private permissions (rw-------).

Login as another, and try the following operations:

a) reading the file

b) writing to the file using >>

c) renaming the file

d) deleting the file

Should any of these be successful? Are they? Explain!

Filesystem - Exercises

(C) 2007 JL@Hisown.com54

Repeat the above, but only after setting the /tmp directory using “chmod +t /tmp”. What

happens? What is the effect of the sticky bit?

Crash Course in UNIX and Linux Survival Skills

Filesystem (Cont.)

2. Symbolic links

Create a file, say, /tmp/your_name and fill it with content.

ls –l that file.

Create a softlink and a hard link to this file.

ls –l all three (your file, the soft and hard link). What has changed?

Now, rm the original file, and ls –l the remaining ones. What do you see?

Filesystem - Exercises

(C) 2007 JL@Hisown.com55

Now, recreate the original file, and fill it with new content. ls –l again. What do you see?

Cat all three, and explain the results:

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com56

Crash Course in UNIX and Linux Survival Skills Processes

(C) 2007 JL@Hisown.com57

Crash Course in UNIX and Linux Survival Skills

Most operating system processes and services are daemons. These include:

Processes

(C) 2007 JL@Hisown.com58

Most operating system processes and services are daemons. These include:

-The task schedulers (atd and crond)

-The print spooler (lpd)

-The InterNET Daemon (inetd)

-Web, mail and FTP servers (httpd, sendmail (smtpd), ftpd, respectively)

-Kernel pageswapper (swapd)

-Miscellaneous RPC servers (rpc.____d)

Crash Course in UNIX and Linux Survival Skills Processes

(C) 2007 JL@Hisown.com59

The most useful command for viewing processes is, by far, ps. This command comes in two flavors, however
– SysV (default in Solaris, and most other UN*X) and the BSD flavor (available in those systems as
/usr/ucb/ps). Both have similar capabilities, although sometimes one is preferable to the other. A third version,
by GNU also exists – with numerous options… Its features combine both the SysV and BSD versions:

********* simple selection ********* ********* selection by list *********

-A all processes -C by command name

-N negate selection -G by real group ID (supports names)

-a all w/ tty except session leaders -U by real user ID (supports names)

-d all except session leaders -g by session leader OR by group name

-e all processes -p by process ID

T all processes on this terminal -s processes in the sessions given

a all w/ tty, including other users -t by tty

g all, even group leaders! -u by effective user ID (supports names)

r only running processes U processes for specified users

x processes w/o controlling ttys t by tty

Crash Course in UNIX and Linux Survival Skills

*********** output format ********** ********** * long options ***********

-o,o user-defined -f full --Group --User --pid --cols

-j,j job control s signal --group --user --sid --rows

-O,O preloaded -o v virtual memory --cumulative --format --deselect

-l,l long u user-oriented --sort --tty --forest --version

X registers --heading --no-heading

********* misc options *********

-V,V show version L list format codes f ASCII art forest

-m,m show threads S children in sum -y change -l format

-n,N set namelist file c true command name n numeric WCHAN,UID

-w,w wide output e show environment -H process heirarchy

Solaris also has prstat(1), whereas other systems have top (displaying the “top 20” processes). AIX has
monitor, and HP-UX – gpm (a.k.a glancePlus)

Processes

(C) 2007 JL@Hisown.com60

Crash Course in UNIX and Linux Survival Skills

Every process is uniquely identified by the PID – Process ID. This is a unique runtime

Processes

(C) 2007 JL@Hisown.com61

Every process is uniquely identified by the PID – Process ID. This is a unique runtime
identifier (usually 32-bit), allocated in a monotonically increasing sequence (it can wrap around, but 32-bits
are a LOT of processes). The process ID is used in the various process manipulation and control commands.

Every processes also has a PPID – Parent process ID. This is the PID of the process that
spawned it. (User processes are spawned by the login shell). All processes start as fork()ed clones of their
parent, then drift off. The lineage traces back to init (PID 1, the master process). Also, a unique connection
exists between signal and child, which will be discussed later.

CMD – The command that spawned the process, with or without arguments.

TTY – The controlling terminal. Most processes retain a link to their controlling terminal,
which can be used for keyboard signals. Should a process lose its terminal, tty is marked as “?”.

Owner – Every process is owned by a certain user. Most are owned by root, some by
daemon, and the rest – by users. Root can control all processes (naturally). Other users are limited to control
over their own processes.

Process groups and sessions groups are not discussed here.

Crash Course in UNIX and Linux Survival Skills

Priority/Nice – All processes are created equal, but some are more equal than others.. The
process scheduling priority gives some processes precedence over others. This is usually fixed, and cannot be
modified (at least not by normal users). Users can modify the base priority to a limited extent, however, using
the nice(1)command. Nice enables the user to be “nice” to others, and relinquish CPU time for others, by
specifying a “nice value” – 1 to 19. The name dates back to the dark ages, when UNIX was run on very weak
PDPs. Root can be not-so-nice, and specify negative nice values, 1 to -20.

Processes

(C) 2007 JL@Hisown.com62

Crash Course in UNIX and Linux Survival Skills

Process States:

Processes

(C) 2007 JL@Hisown.com63

Process States:

O Process is currently executing

R Process is Runnable, and queued

S Process is sleeping, or waiting for an event

T Process is either sTopped, or Traced

Z Process is a Zombie: also appears as <defunct> in the ps list.

STIME : The time this process first entered execution in CPU.

TIME: The cumulative time spent in the CPU, actually executing (that is, processing opcodes, and not
sleeping).

SZ: Process size in memory.

Crash Course in UNIX and Linux Survival Skills

The nice(1) command, as stated, gives users the ability to relinquish their CPU time in favor of others. This is

Processes

(C) 2007 JL@Hisown.com64

The nice(1) command, as stated, gives users the ability to relinquish their CPU time in favor of others. This is
useful if the command is known a priori to be of low priority.

renice(1)works on already active processes, changing their nice value.

Root can, of course, specify negative nice values.

priocntl(1), in solaris, enables fine tuning of process priority. Process may be assigned to one of three classes:

- Real Time

- Time Sharing

- Interactive

Processes may have their priorities changed in real time.

Crash Course in UNIX and Linux Survival Skills

Notice the output is rather cryptic: S_IFCHR stands for character device. S_IFDOOR – RPC door. dev

Processes

(C) 2007 JL@Hisown.com65

Notice the output is rather cryptic: S_IFCHR stands for character device. S_IFDOOR – RPC door. dev
(136,0) indicates the hard disk on which inode 996 (in this case, /devices/pseudo@0:4, tty4) resides. UID and
GID are the owners of the file. Use find –inum to resolve the inode name.

Ymir$ $ $ $ pfiles $$
1081: sh
Current rlimit: 256 file descriptors
0: S_IFCHR mode:0620 dev:136,0 ino:996 uid:1012 gid:7 rdev:24,4
O_RDWR

1: S_IFCHR mode:0620 dev:136,0 ino:996 uid:1012 gid:7 rdev:24,4
O_RDWR

2: S_IFCHR mode:0620 dev:136,0 ino:996 uid:1012 gid:7 rdev:24,4
O_RDWR

Ymir$ cd /dev
Ymir$ pls –lLR | grep “136, *0”
brw-r----- 1 root sys 136, 0 Jun 23 12:25 c0t0d0s0
crw-r----- 1 root sys 136, 0 Jun 23 12:25 c0t0d0s0
Ymir$ find / -inum 996 –print
/devices/pseudo/pts@0:4
Ymir$ fuser /devices/pseudo/pts@0:4
/devices/pseudo/pts@0:4: 1352oy 1081oy 1079o

Crash Course in UNIX and Linux Survival Skills

Signals are a very primitive form of process control – sending notifications to processes from other
processes, or the kernel. The notifications are semaphores – that is, they indicate some event has occurred, but
contain no data whatsoever.

Processes

(C) 2007 JL@Hisown.com66

contain no data whatsoever.

The kill(1) command is a VERY useful command, enabling users to generate signals on their own. All 31
signal-types (on some systems, e.g. AIX, 64) may be sent manually using this command. Only some of them
are commonly used, however, with the rest remaining obscure.

Crash Course in UNIX and Linux Survival Skills

The table above lists the important signals.

Processes

(C) 2007 JL@Hisown.com67

HUP is sent by the terminal driver when the controlling terminal (tty) is disconnected (hence
the name, hangup). Programs such as vi can catch the signal, save the session, and prevent loss of work. Most
programs simply die. To enable programs to continue anyway, use the “nohup” command.

INT is sent by the terminal driver when the controlling terminal issues a CTRL-C (or the
equivalent stty intr key). Most programs die, but some prompt the user to continue or abort.

QUIT is sent by the terminal driver upon a CTRL-\. Usually generates a core dump.

TERM is the graceful way to terminate a process – enabling it to catch the signal, and
perform the custom rituals prior to departing the cruel world of UNIX. It is thus the default signal sent by the
kill(1) command. Responsible programs close open files, commit or rollback transactions, and then clean up
nicely. Others simply ignore this gentle plea, and go on executing.

KILL is the only unmaskable signal - the bona fide way to kill a process outright. Anything
alive – dies instantly (no buts, no “in a second”, no saving throw – in early UN*X versions, this killed init –
and caused and instant kernel panic!). Of course, this also means no saving open files, and such. Due to
programs ignoring the TERM signal, most administrators employ the bad habit of appending “-9” to the kill
command. Be advised this IS dangerous – it works fine with stuck man or vi sessions, but you wouldn’t want
to kill your Oracle or Sybase with it. Therefore, Use at your own risk.

Some processes also accept USR1and USR2– one such example is named (the DNS
daemon). Those that do, often use it for debugging. Most simply ignore it, however.

Crash Course in UNIX and Linux Survival Skills

STOPand CONT are two of the most useful, yet unappreciated signals – the former
suspends a process while executing (changing its status to sTopped), and the latter – resumes it.

Processes

(C) 2007 JL@Hisown.com68

When working in a local terminal, the STOP functionality is accessible via CTRL-Z (or stty
susp). The active process (also called a “job”) is stopped (suspended) immediately. The CONT signal may
then be sent either by typing “fg” (returning the job to the foreground) , or by “bg” – returning the job to the
background. Jobs then execute merrily in the background until one of three happens:

- They need exclusive access to their controlling terminal (e.g. man, vi, full screen mode), or any input.

- They need terminal output (of any kind) when the stty tostopoption has been set – then, a TSTP signal is
sent.

- The controlling terminal exits, and they get HUP’ed. If that doesn’t kill them, they are killed the first time
they will require input from the terminal.

By sending these signals to a process on another terminal, one can simulate CTRL-Z and
suspend processes (useful when you know a process is about to read/write from/to a file that isn’t quite ready
yet).

Crash Course in UNIX and Linux Survival Skills

The full list of signals is always available by “kill –l ” , or “man signal” (section 3, (Solaris - 3HEAD)).

Processes

(C) 2007 JL@Hisown.com69

These signals are less useful (no real need to send them manually, other than during debugging). Most signals
in this list simply terminate the process, with a core dump. The exceptions:

PIPE, ALRM – quiet exit

CHLD – ignored unless waiting for a child process.

Crash Course in UNIX and Linux Survival Skills

To run jobs in batch mode, use the at(1) command. This useful utility places commands in a
queue, which is processed by the at daemon – atd. This daemon wakes up every minute and checks for
pending jobs. If any are found, they are executed, with no controlling terminal.

Processes

(C) 2007 JL@Hisown.com70

pending jobs. If any are found, they are executed, with no controlling terminal.

When running batch jobs, it is important to make sure that they do not require input – use
“<“ and pre-defined answer files, if they do. Output, if any, is usually e-mailed to the user (how convenient ...
☺), but may be redirected to files with the “>” and “>>” operators.

While at comes in two flavors with different syntax, the functionality is essentially identical,
and the same queue is processed in both cases.

Example:

Prompt>at 17:30

at>echo “Go home!” > /dev/console

at> (control-D)

Crash Course in UNIX and Linux Survival Skills

crontab –l : List crontab

crontab –e : edit crontab files with default EDITOR.

Processes

(C) 2007 JL@Hisown.com71

Crontab format is

Minute/Hour Hour/Day Day/Month Month/Year Day/Week Command

Multiple values may be separated by commas.

Crash Course in UNIX and Linux Survival Skills

Processes

This exercise has you answering several process related questions

Processes and files

• Find the process ID of xinetd

__

II. Using lsof, see which files are held by xinetd

__

__

III. Using the /proc file system, which command would you execute for this information?

__

Processes - EXERCISES

(C) 2007 JL@Hisown.com72

IV. Run ‘vi’ on some file in the /tmp file system. Next, in another tty, attempt to umount
/tmp. Is it successful?

Which commands would you run to enable a umount of /tmp?

Process Control:

• Open two shells (in two separate ttys). Obtain their PIDs by “echo $$” in each.

• From one shell, send a STOP signal to the other shell. Then switch to it. What happens?

III. From the other shell, send a CONT signal to the other shell. Now switch to it. Any
change?

Crash Course in UNIX and Linux Survival Skills

Scheduling Jobs – I - at

• Using the “at” command to set a job to capture all active processes in a minute.

__

II. Using the “at” command set a job to kill all active shells one minute from now

__

Scheduling Jobs – II – cron, anacron

• Add a cron job to run 10 minutes after the hour.

__

Processes - EXERCISES

(C) 2007 JL@Hisown.com73

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com74

Crash Course in UNIX and Linux Survival Skills

UNIX was developed as a textual, terminal-oriented operating system. That far we already know.
Functionally, this means that UNIX commands are suited to operate in a terminal – Taking input from files, or

Filters

(C) 2007 JL@Hisown.com75

Functionally, this means that UNIX commands are suited to operate in a terminal – Taking input from files, or
interactively from the user, and outputting messages and errors to the terminal.

From a design standpoint, program I/O is separated into three:

- Standard Input: Is defined as the stream from which input is read, when the program requires any input
that is not explicitly requested from a file. By default, this “Standard Input” (or STDIN, for short), is
connected to the user’s terminal, as the user is the interactive controller of the command executed.

- Standard Output: is defined as the stream to which output is written. We say “output” to denote normal
operational output, such as the results of execution, not including any errors, which are handled separately.
Standard Output, (or STDOUT, for short), is likewise connected to the terminal, as the command needs to
report back to the user, interactively situated at the terminal from which the command was invoked.

- Standard Error : is a separate stream that is used solely for the purposes of error reporting. Called
STDERR, for short, it is normally indistinguishable from the output steram, as both are interleaved and
connected to the terminal.

This behavior in UNIX is default in all CLI commands (but not some X-Windows commands). However, it
generally goes unnoticed since (unless otherwise stated) all three streams – input, output and error – are
connected to the terminal, providing the expected behavior of getting input from the user, and spitting output
or error messages to the user. However, it is exactly this abilty to “otherwise state”, or redirect the streams
that provides UNIX with surprisingly flexibility in tying commands together.

While nearly all commands in UNIX can have their output and error streams redirected, filters prove to be a
special subset. Filters operate either on files (if provided in the command line as a filename argument) or on
their standard input. That is, unlike any other command, whose output may be redirected, filters allow a
default mode for work on their standard input – thereby enabling them to READ input “prerecorded” in a file,
or (as we shall shortly see), connected from another command. Filters also NEVER modify their input stream.

Crash Course in UNIX and Linux Survival Skills

To demonstrate redirection, we will use a simple command – ls. This command, as you’ll recall, provides a file
listing. When called, however, with the name of a non existent file, it will issue an error message – after all, it

Filters

(C) 2007 JL@Hisown.com76

listing. When called, however, with the name of a non existent file, it will issue an error message – after all, it
cannot list that which does not exist.

If no redirection takes place, the error message is sent to terminal, along with the output of the file in question:

However, notice the same, with the “>” operator, which we use to redirect the output stream elsewhere:

And with the “2>”, which we will use* to redirect the error stream elsewhere:

This can, and *will* prove to be *very* useful as we deepen our exploration into the UNIX realm.

Certain caveats associated with redirection will be shown in the exercises.

* - We use 2> on all shells but those of the csh/tcsh variant. In those shells, error redirection is impossible without output redirection,
and the syntax is somewhat convoluted.

Kraken$$$$ ls –l /etc/passwd nosuchfile > /tmp/output
/bin/ls: nosuchfile: No such file or directory

Kraken$$$$ ls –l /etc/passwd nosuchfile 2>/tmp/output
-rw-r--r-- 1 root root 6223 May 13 02:31 /etc/passwd

Kraken$$$$ ls –l /etc/passwd nosuchfile
/bin/ls: nosuchfile: No such file or directory
-rw-r--r-- 1 root root 6223 May 13 02:31 /etc/passwd

Crash Course in UNIX and Linux Survival Skills

Redirecting to files opens up a slew of possibilities for command expansion, by saving output from a
command for later processing by another. However, more often than not the output of one command is useful

Filters

(C) 2007 JL@Hisown.com77

command for later processing by another. However, more often than not the output of one command is useful
as input for another, and commands are run in a direct sequence. In those cases, rather than doing something
like:

cmd1 > CMD1_OUTPUT

cmd2 < CMD1_OUTPUT > CMD2_OUTPUT

cmd3 < CMD2_OUTPUT

And so forth, it makes more sense to pipe the commands together:

cmd1 | cmd2 | cmd3

This powerful mechanism opens an in-memory channel over which the output stream of one command can be
redirected into the input stream of another. Not just saving time for the user typing the sequence, but also
increasing performance and saving on temporary disk space.

The fact that “pipelines” like these can be put to any length necessary makes UNIX commands highly
extensible – but leaves some design work for its users, who now become architects, of sorts. UNIX provides
you with the raw tools, that perform the most generic operations. It is up to you to craft more refined tools,
suited for particular purposes, by joining the basic building blocks together. The next pages will show you
these building blocks in action, individually as well as together with others.

Crash Course in UNIX and Linux Survival Skills

The ‘wc’ command (word count) is a generic utility that performs a very simple operation: counting words,
lines or characters in a filename or its standard input. As a filter, it can work with either – defaulting to

Filters

(C) 2007 JL@Hisown.com78

lines or characters in a filename or its standard input. As a filter, it can work with either – defaulting to
standard input if the filename is not specified.

While it might seem less than exciting behavior, it turns out to be useful behavior after all. The wc utility can
serve to answer questions beginning with “how many”, and have interpretation in file or line form.

For example – how many users are defined on the system? As the example shows, wc-l /etc/passwdcan
answer that question, if we take into consideration each user is represented as a line in that file.

Another example – how many files in a particular directory? By counting the output of ls –l, (and
remembering to substract one) for the “total” line, we can answer that: ls –l | wc –l.

Crash Course in UNIX and Linux Survival Skills

Useful complements to “wc” are the “head” and “tail” filters. They allow the selection of lines from standard
input or a file by line number. Their argument is a number (represented about by ##), which is the count of

Filters

(C) 2007 JL@Hisown.com79

input or a file by line number. Their argument is a number (represented about by ##), which is the count of
lines returned. If this argument is not specified, the default is 10.

Tail offers another feature of using “+” instead of “-”. So that “tail -5” is the last 5 lines of the file, and “tail
+5” is lines from the 5th and up (till the end of file).

Another useful feature is tail –f (thanks Craig!). This enables us to look at the last 10 (or other) lines of the
file, and continue to hold the file open. Meaning, as new lines appear in the file (say, as output of messages to
a log, or such), tail will display these lines as they become available. This is particularly useful, if used in
conjunction with “grep”, which enables one to isolate only those lines that are meaningful.

Crash Course in UNIX and Linux Survival Skills

Picking up where “tail” and “head” leave off, “split” enables to cut a file (or standard input) to pieces. This is
very common in breaking up huge files into manageable pieces (as was the case for a long time when floppy

Filters

(C) 2007 JL@Hisown.com80

very common in breaking up huge files into manageable pieces (as was the case for a long time when floppy
disks were used).

Split will automatically split its input into file named xaa through xaz.. (going to xba…. and further if
necessary). An alternative prefix can be used – but since the prefix is the second argument, if you want to use
stdin (as in, leave the filename argument blank), “-” is used.

The switches to split are –b and –l (-b is supported everywhere, whereas –l started its life as another Linux
extension). –b is very useful in that it can cut into specific file sizes in bytes (default), Kilobytes (by appending
a “k” to the number), Megabytes (appending an “m”) or even Gigabytes (“g”). The only drawback is that all
“splits” have to be the same size.

To join files together, use “cat”. Cat is also used to just type files to stdout.

Crash Course in UNIX and Linux Survival Skills

‘cut’ is a surprisingly useful utility that can isolate specific columns or fields from its input text, and pass only
them to the output.

Filters

(C) 2007 JL@Hisown.com81

them to the output.

Cut operates either by characters (-c, in which case the character range should be specified), or by fields (-f) in
which case the default delimiter for fields is TAB. This delimiter could be changed easily by specifying –d.

Crash Course in UNIX and Linux Survival Skills

Sort and Uniq are two commands that are often used together, and the latter requires files to be sorted.

Filters

(C) 2007 JL@Hisown.com82

Sort serves as a universal input sorter on any text file type. The default sort is lexicographic, but can be
modified by numerous switches.

Crash Course in UNIX and Linux Survival Skills

Grep is, by far, the most powerful of all UNIX filters. This is due to two reasons:

Filters

(C) 2007 JL@Hisown.com83

- Grep answers a need for a common task: isolating lines in a file according to a certain text they contain.

Whereas ‘head’ and ‘tail’ could find lines by number, grep enables you to look for keywords and other

interesting identifiers in files or command output

- Grep bolsters the above functionality with regular expressions– these are pattern strings, that enable you

to specify either fixed text, or use a variety of wildcards and placeholders.

If you are unfamiliar with regular expressions, or “RegExp”s, as they’re affectionately known, you’ve been
missing out. Regular expressions are *incredibly* powerful ways to deal with all forms of text. Instead of
complex string operations such as cutting, splicing and concatenating, regular expressions can achieve the same
functionality with a single pattern, that can be supported by many UNIX utilities (grep being just one of them –
‘vi’ is another), as well as modern programming languages. The appendix lists some regular expression syntax
highlights.

The following examples show three modes of usage of this wonderful* command.

Example I: using grep for basic string matching

In the first example, we look for lines containing ‘root’ anywhere in the line, by simply specifying ‘root’. The
lines returned show where ‘root’ was found. We use the non-standard Linux extension of “GREP_COLOR” to
highlight the results.

Kraken$$$$ export GREP_COLOR
Kraken$$$$ grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin

* - Yes, I’m biased, but no, I’m not getting carried away. Grep is a practical swiss army knife in the UNIX world, used for all sorts of
purposes: from parsing log files to extending other commands. It also has ports to the Win32 world.

Crash Course in UNIX and Linux Survival Skills

Example II : using ‘^’ and ‘$’ to limit matches

Notice the difference in results for the second example illustrated. By prepending the “^” character to our
expression, we now see only those lines that begin with our expression. ‘^’ (shift-6 on most keyboard) thus
serves as an imaginary ‘beginning-of-line’ character. Likewise, the ‘$’ serves as an imaginary ‘end-of-line’
character, and appending it to the expression gives it the meaning “lines that end with our expression”.

Note: because ‘$’ and ‘^’ often have special meanings to the command shell itself, we use single quotes to
delimit our expression. Since most often you’ll want to use Regular Expressions rather than fixed strings, it’s a
good practice to adopt the usage of delimiting the expression by single quotes whenever you use it.

Example III : inverting grep (using –v)

Kraken$$$$ grep ^root’ /etc/passwd
root:x:0:0:root:/root:/bin/bash

Kraken$$$$ grep ‘sh$’ /etc/passwd
morpheus:x:500:500:Morph:/home/morpheus:/bin/zsh

Kraken$$$$ grep –v sh$ /etc/passwd
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync

Filters

(C) 2007 JL@Hisown.com84

Notice none of the output lines end with “sh”.

sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

Crash Course in UNIX and Linux Survival Skills

Most UNIX versions support two additional variants of grep – and, in fact, the ‘grep’ you use is likely to be
aliased to one of the two:

Filters

(C) 2007 JL@Hisown.com85

aliased to one of the two:

fgrep – is a faster version of grep, that supports fixed patterns rather than regular expressions. If

all you’re looking for is specific text, rather than a variable RegExp, use this grep instead.

egrep– is an extended version of grep, that supports even more regular expressions. Its RegExp engine

enables the use of additional characters such as the (|) combination.

Example: Find lines beginning with the word “root” OR the word “adm”: Normal grep can’t do that.

Kraken$$$$ egrep ‘^(root|adm)’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
adm:x:3:4:adm:/var/adm:/sbin/nologin

Crash Course in UNIX and Linux Survival Skills

‘tr’ is a mnemonic for ‘translate’. This command is a filter, copying its standard input to standard output, much
like ‘cat’. But it has further functionality – given two string (character sequence) arguments, source and target,

Filters

(C) 2007 JL@Hisown.com86

like ‘cat’. But it has further functionality – given two string (character sequence) arguments, source and target,
it will replace each character it encounters in its input also found in the source string, with the corresponding
character in the same position in the target string.

Is that confusing? Well, as the following will show, this functionality can be used in a variety of ways:

Example I: Uppercase a file

Example II : Get rid of characters you really don’t like:

Example III : Squish repeating characters (like space or tab) (but… why is this useful?)

Kraken$$$$ tr ‘[a-z]’ ‘[A-Z]’ < /etc/passwd
ROOT:X:0:0:ROOT:/ROOT:/BIN/BASH
BIN:X:1:1:BIN:/BIN:/SBIN/NOLOGIN
DAEMON:X:2:2:DAEMON:/SBIN:/SBIN/NOLOGIN
ADM:X:3:4:ADM:/VAR/ADM:/SBIN/NOLOGIN
.. (output truncated)..

Kraken$$$$ echo ‘xXxyYyxXx’ | tr -d ‘x’
XyYyX

Kraken$$$$ ls –l
-rw-r--r-- 1 johnny users 3595 Sep 19 2006 test.log
Kraken$ ls –l | tr –s ‘ ‘ ‘
-rw-r--r-- 1 johnny users 3595 Sep 19 2006 test.log

Crash Course in UNIX and Linux Survival Skills

‘tr’ is powerful, but limited: it can only replace specific characters, and has no context determination – It
cannot replace characters in specific words, or the words themselves.

Filters

(C) 2007 JL@Hisown.com87

cannot replace characters in specific words, or the words themselves.

This is where sed – the stream editor – comes into the picture. This is a classic filter: operating from its
standard input to its standard output, while processing directives according to regular-expressions.

The full syntax of sed is far, far too complex for our scope. O’Reilly has an entire book devoted to SED and its
accomplice, AWK (seriously, these ARE real names of UNIX commands). The following examples, however,
show some common uses of this little known utility.

Crash Course in UNIX and Linux Survival Skills

Filters
1. Redirection

Run the ‘ls’ command with a nonexistent file argument as well as a real one, and capture

first its output, then its error stream, into two separate files. Use ‘cat’ to make sure the files

indeed have the proper output. Is everything as you expect?

Now try to capture both output and errors to same file (say, /tmp/redirect). What command

would you use? And are the results as expected? If not, explain why?

Filters - Exercises

(C) 2007 JL@Hisown.com88

In order to capture both streams, but not to have one destroy the other, we use a special

notation of “2>&1”, which essentially tells the shell to “redirect stderr(2) to the same place

as it previously did stdout(1)”. Try this and make sure this works:

2. Clobbering

Repeat the ‘ls’ redirection using the “>” operator several times. Each time you try the

command, what happens to the file contents? What is the potential issue with this?

Now type: setopt noclobber (zsh), set noclobber (bash), and repeat the previous step. What

happens? Does the ‘ls’ command run? Explain.

Crash Course in UNIX and Linux Survival Skills

Filters (cont)
2. Creative Filter Usage

Explain what the following commands do:

a) head -5 /etc/passwd | tail -1

How would you achieve the same result, with the same commands, but with different

arguments?

b) ls –l /tmp | wc –l

c) ls –l /bin | grep ‘^…x’

Filters - Exercises

(C) 2007 JL@Hisown.com89

d) cut –d’:’ –f1 /etc/passwd

Crash Course in UNIX and Linux Survival Skills

Filters (cont)
3. xargs

This exercise introduces a new command, called xargs.

Try the following: ‘echo a b c | xargs echo’ and ‘ls | xargs echo’. What is the effect?

Now try: ‘find / -name “/bin/s*” –print | xargs ls

As opposed to find / -name “/bin/s*” –exec ls \{ \};

What is the (barely noticeable) difference?

Filters - Exercises

(C) 2007 JL@Hisown.com90

Crash Course in UNIX and Linux Survival Skills

Filters (cont)
4. Sort, Cut, and friends..

Working with the password file, what are the commands to sort it by…

a) Username (1st column)

b) User Id (3rd column)

c) Full name (description – 5th column)?

Use the “Cut” and sort commands on the password file to create a new file that will contain

the columns of full name, username and userid only, in said order.

Filters - Exercises

(C) 2007 JL@Hisown.com91

Use a combination of commands to print out the usernames (only) of all users that are

equivalent to the root user (i.e. have a UID of “0”)

Use a combination of commands to print out the name of the file last accessed in a given

directory

Use a combination of command to print out the name of the largest file in a given directory

Crash Course in UNIX and Linux Survival Skills

Filters (cont)
5. Unleash the power of grep

This exercise shows grep’s versatility. Try the following regular expression on any XML or

HTML file: '<\(.*\).*>.*</\1>'

What is the effect? Explain?

Devise a regular expression to match tags with no child elements.

Advanced: Devise a regular expression to find broken tags

Filters - Exercises

(C) 2007 JL@Hisown.com92

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com93

Crash Course in UNIX and Linux Survival Skills Basic Scripting

(C) 2007 JL@Hisown.com94

Crash Course in UNIX and Linux Survival Skills Basic Scripting

(C) 2007 JL@Hisown.com95

Crash Course in UNIX and Linux Survival Skills Basic Scripting

(C) 2007 JL@Hisown.com96

Crash Course in UNIX and Linux Survival Skills Basic Scripting

(C) 2007 JL@Hisown.com97

Crash Course in UNIX and Linux Survival Skills Basic Scripting

(C) 2007 JL@Hisown.com98

Crash Course in UNIX and Linux Survival Skills

Basic Scripting

1. Creating your own login script.
Create a simple shell script. Have the script execute a welcome message, set your

aliases, and an additional message if it detects the date today is a Wednesday. (hint: use

“date” – and consult the man for the right argument).

To enable the login script, copy it into your shell’s personal initialization file(.zshrc, .kshrc

or .bashrc)

2. Creating a custom command

a) Create a shell script to print out details on a given user in the system. The script will

Basic Scripting - Exercises

(C) 2007 JL@Hisown.com99

a) Create a shell script to print out details on a given user in the system. The script will
print out the time of last login (by using the “last” command”), as well as the user
information (from /etc/passwd) in a more hospitable format.

i) Accept a command line argument by using “$1” in the script. This will be the username

__

__

ii) Print an error on too many arguments, by checking the value of $#.

__

__

b) Make the script executable (chmod…)

__

c) Try the script! How would you invoke your script from the command line?

__

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com100

Crash Course in UNIX and Linux Survival Skills

UNIX “Cheat Sheet”

Copy files:

cp src dst

src = source file

dst = destination file, or directory (may be . , for current)

Copy a directory tree

cp –pR src dst

src = source directory

dst = destination directory (may be . , for current)

-p = preserve permissions (otherwise you will become owner of these files)

-R = recurse (into subdirectories)

Delete files:

rm –i file1 file2

file1, file2.. = files to delete

-i = interactively. rm nags and asks “are you sure”. Safe for beginners

Cheat Sheet

(C) 2007 JL@Hisown.com101

-i = interactively. rm nags and asks “are you sure”. Safe for beginners

Delete a subtree (deltree):

rm –fR dir

dir = directory to obliterate out of existence

-f = force. rm won’t ask nagging questions (but proceed at your own risk)

-R = recurse into subdirectories. This is required since rm cannot remove a directory otherwise.

Move/Rename:

mv file_or_dir1 …. target

file_or_dir1 = File or directory to move/rename

target = new name (for a file/dir) or target directory (for multiple files)

Optional:

-f/-i = force/interactive. mv won’t/will ask questions

Crash Course in UNIX and Linux Survival Skills

UNIX “Cheat Sheet” (cont.)

Find a file in the local file system:

find where criterion action

where = one or more directories to search in (usually “/”)

criterion = for search. e.g.

-name foo : Find file named foo

-inum 123: Find filename(s) of inode 123

-size-5000: Find files of up to 5000 bytes

-newer file1: Find files created after file1 was.

action = -print : echo the filename (default)

-exec cmd {}\;: execute command on file ({}\; is a placeholder. MUST use \;, no space!)

Display Directory tree (with sizes):

du –k dir

dir = directory tree to show. May be omitted, if from current directory (.).

-k = display sizes in kb, and not 512-byte blocks.

-s= show summary only (if interested in size, not tree)

Cheat Sheet

(C) 2007 JL@Hisown.com102

-s= show summary only (if interested in size, not tree)

Show filesystems, with disk usage:

df dir

dir = directory whose filesystem is to show. May be omitted, for all filesystems.

Crash Course in UNIX and Linux Survival Skills

(C) 2007 JL@Hisown.com103

Crash Course in UNIX and Linux Survival Skills

Protocols:

Networking Protocols – OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, UDP and SCTP

Application Protocols – OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VoIP:
In depth discussion of H.323, SIP, RTP/RTCP, down to the packet level.

Linux:

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world of Linux for the non-command line oriented
user. Basic skills and commands, work in shells, redirection, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advanced subjects such as user administration,
software management, network service control, performance monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, including processes, threads, IPC and
networking. Linux User experience required

…If you liked this course, consider…

(C) 2007 JL@Hisown.com104

networking. Linux User experience required

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.4 and 2.6, focusing on design, architecture, writing
device drivers (character, block), performance and network devices

Embedded Linux Kernel Programming:

Similar to the Linux Kernel programming course, but with a strong emphasis on
development on non-intel and/or tightly constrained embedded platforms

Windows :

Windows Programming:

Windows Application Development, focusing on Processes, Threads,
DLLs, Memory Management, and Winsock

Windows Networking Internals:

Detailed discussion of Networking Protocols: NetBIOS/SMB, CIFS,
DCE/RPC, Kerberos, NTLM, and networking architecture

Security:

Cryptography:

From Basics to implementations in 5 days: foundations, Symmetric Algorithms,
Asymmetric Algorithms, Hashes, and protocols. Design, Logic and implementation

Application Security

Writing secure code – Dealing with Buffer Overflows, Code, SQL and command
Injection, and other bugs… before they become vulnerabilities that hackers can exploit.

