
Johnny's Lecture Notes on Mac OS X Internals

I. Introduction to OS X Kernel Architecture

II. The XNU Source

III. The Kernel Startup

IV. Mach, detailed

V. Programming Kernel Extensions (KEXTs)

VI. Kernel/User mode APIs

VII. Character Device Drivers

Table of Contents

VII. Character Device Drivers

VIII. I/O Kit

IX. I/O Kit and Driver Events

X. PnP

(C) 2010 JL@HisOwn.com2

Jonathan Levin specializes in training and consulting service s. This, and many other
training materials, are created and constantly upda ted to reflect the ever changing
environment of the IT industry.

JL@HisOwn.comTo report errata, provide feedback, or for more det ails, feel free to email

Printed on 100% recycled paper. I hope you like the course and keep the handout.. Else – Recycle!

© Copyright

版權聲明
This material is protected under copyright laws. Un authorized reproduction, alteration, use in
part or in whole is prohibited, without express per mission from the author.
I put a *LOT* of effort into my work (and I hope it shows) - Respect that!

v 1.6.4 (8/22/2010)

Darwin is the collective name for the core of OS X – comprised of the Kernel (XNU), and the shell
environment. The core implements a full UNIX build, both in terms of APIs as well as the various

Johnny's Lecture Notes on Mac OS X Internals OS X Architecture

environment. The core implements a full UNIX build, both in terms of APIs as well as the various
binaries (df, ls, mv, rm…), libraries (libc, libpthread…) and UNIX filesystem (/bin, /lib, /sbin, /etc..).
Most users don’t even see those aspects, as even the filesystem is hidden (it can’t be normally seen
in OS X’s Finder).

The Darwin environment is full open source – Apple makes valiant efforts to keep its sources
updated with every release of OS X, at http://www.opensource.apple.com/. The sources are released
under the “Apple Public Source License”, which is a BSD-like license – not surprising, considering
Darwin ripped major portions of the FreeBSD kernel.

(C) 2010 JL@HisOwn.com4

OS X has a rather long and convoluted evolution from Rhapsody, which in turn evolved from
NEXTStep, brought together to Apple with Steve Jobs’ return. As a result, its kernel, XNU, is a hybrid

Johnny's Lecture Notes on Mac OS X Internals Mach

NEXTStep, brought together to Apple with Steve Jobs’ return. As a result, its kernel, XNU, is a hybrid
of Mach (the core of NEXTStep) and BSD/POSIX (which is more common in other UNIX
environments).

Mach itself is a microkernel architecture, originally developed by Carnegie Mellon University (CMU).
CMU hasn’t really publicly developed anything in Mach recently, and Apple took over, and installed
their own changes – first and foremost the integration with the BSD top layer, and the I/O Kit
environment (both of which will be discussed, in due time). However, Apple really didn’t bother much
with cumbersome documentation – and, as such is the case, most of the documentation on the Mach
subsystem is the very obsolete Mach 3.0 documentation – last updated around 1992! At least the
source of XNU remains freely open and downloadable (http://www.opensource.apple.com), so one
can learn a lot from reading it (which is how this very book was created).

Since OS X must supply both personalities – Mach and BSD/POSIX – concurrently, the BSD system
calls occupy a positive range (as on all other systems). The Mach calls are all negative numbers.

(C) 2010 JL@HisOwn.com26

To consider a simple example of a Mach IPC server, let’s construct one, step by step:

Johnny's Lecture Notes on Mac OS X Internals Mach

The server can either request a specific port, or choose to register with a bootstrap server. This is the
preferred method, because the same bootstrap server can then be used to query the port in question
(in a sense, this is similar to the Sun RPC port mapper).

The bootstrap server has a preexisting port, bootstrap_port , which is defined as an extern in
<servers/bootstrap.h> . All the server needs to do is #define a service name, in reverse DNS format
(e.g. “com.hisown.sampleService”), and call bootstrap_check_in (). It will return success, or an error
code (e.g. BOOTSTRAP_NOT_PRIVILEGED or BOOTSTRAP_SERVICE_ACTIVE).

(C) 2010 JL@HisOwn.com42

#define SERVICE_NAME “com.hisown.sampleService”
kern_return_t rc = bootstrap_check_in(bootstrap_port,

SERVICE_NAME,
&server_port);

if (rc != BOOTSTRAP_SUCCESS) { … };

Once the server has an allocated port, we’re pretty much done. The service publishing is handled for
us by the bootstrap server, which means we can enter our message loop, and start processing
messages – receiving requests, and sending replies.

The KEXT’s Info.plist is a vital component. Without it, the Kernel loader cannot properly determine
dependencies and load ordering. This file, usually generated by XCode and later edited for minor

Johnny's Lecture Notes on Mac OS X Internals Kernel Extensions

dependencies and load ordering. This file, usually generated by XCode and later edited for minor
modifications by the developer, defines the KEXT’s various properties – the most of important of
which are shown in the table above. With the exception of IOKitPersonalities , which we will discuss
when we get to I/O Kit, the fields are detailed and explained above.

Like all plists, the file is an XML dict file. It’s comprised of key/string combinations. For example, the
consider the following values, from the IOATAFamily driver (found in /System/Library/Extensions):

(C) 2010 JL@HisOwn.com55

Property Value

CFBundleExecutable IOATAFamily

CFBundleIdentifier com.apple.iokit.IOATAFamily

CFBundleVersion 2.5.1

OSBundleCompatibleVersion 1.0b1

OSBundleLibraries com.apple.kpi.bsd 8.0.0
com.apple.kpi.iokit 8.0.0
com.apple.kpi.libkern 8.0.0
com.apple.kpi.mach 8.0.0

OSBundleRequired Local-Root

.

Atomicity is very important at the Kernel level. The Kernel itself is multithreaded, and multiple
threads may attempt to access the same memory area. This could lead to serious data corruption:

Johnny's Lecture Notes on Mac OS X Internals Kernel Extensions

threads may attempt to access the same memory area. This could lead to serious data corruption:
Consider the case of two threads, trying to increment the same memory area. If thread preemption
causes one thread to be switched in mid operation, when it comes back, its stored value (now in a
register) is not the same as that in the memory location.

Atomic operations guarantee that will not be the case. OS X defines a set of atomic operations, in
<libkern/OSAtomic.h>. These functions are implemented differently on different architectures. The
actual implementation for x86 is at /kernel/xnu//libkern/x86_64/OSAtomic.s

(C) 2010 JL@HisOwn.com64

_OSCompareAndSwap64:
_OSCompareAndSwapPtr: #;oldValue, newValue, ptr

movq %rdi, %rax
lock
cmpxchgq %rsi, 0(%rdx) #; CAS (eax is an implicit operand)
sete %al #; did CAS succeed? (TZ=1)
movzbq %al, %rax #; clear out the high bytes
ret

_OSAddAtomic64:
_OSAddAtomicLong:

lock
xaddq %rdi, 0(%rsi) #; Atomic exchange and add
movq %rdi, %rax;
ret

While these functions are slower than their normal, non atomic equivalents, (and thus shouldn’t
always be used, in non threaded situations) they are guaranteed exclusivity, especially in SMP
environments, and save the significant overhead of mutexes.

Exercise

To show system call invocation, consider the following simple program:

Compile it and the use “otool” to disassemble. You will need to use “-tV” for the disassembly, and “-I”
to show symbols. Like so:

Johnny's Lecture Notes on Mac OS X Internals

Darwin # gcc a.c gcc a.c gcc a.c gcc a.c ––––o ao ao ao a
Darwin # otool otool otool otool ----tV tV tV tV ––––I aI aI aI a
Indirect symbols for (__TEXT,__symbol_stub1) 2 entries
address index name
0x0000000100000f30 9 _exit
0x0000000100000f36 10 _fork
...

_main:
0000000100000f0c pushq %rbp
0000000100000f0d movq %rsp,%rbp
0000000100000f10 subq $0x10,%rsp
0000000100000f14 movl %edi,0xfc(%rbp)

void main(int argc, char **argv)
{

fork();
exit(1);

}

Kernel/User APIs

What do we see here? That “f36” over there is the reference to fork(), and the “f30” – to exit (note
that the “1” argument to exit is passed (line 100000f25 – in the EDI register). If you use “nm” on the
binary, you’ll see that the _fork and _exit are both undefined:

Where, then, will we find them? Using “otool” again, this time with “-L”, shows us the dependency:

(C) 2010 JL@HisOwn.com69

0000000100000f17 movq %rsi,0xf0(%rbp)
0000000100000f1b movl $0x00000000,%eax
0000000100000f20 callq 0x00000f36
0000000100000f25 movl $0x00000001,%edi
0000000100000f2a callq 0x00000f30

Darwin # nm anm anm anm a
..
0000000100001058 D _environ

U _exit
U _fork

0000000100000f0c T _main

Darwin # otool otool otool otool ----L aL aL aL a
a:

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0)

Exercise (cont.)

So, onward to libSystem, it is:

Johnny's Lecture Notes on Mac OS X Internals

/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_mach_reply_port:
000010c0 movl $0xffffffe6,%eax # note negative system call numbernote negative system call numbernote negative system call numbernote negative system call number
000010c5 calll __sysenter_trapcalll __sysenter_trapcalll __sysenter_trapcalll __sysenter_trap
000010ca ret
000010cb nop
_thread_self_trap:
000010cc movl $0xffffffe5,%eax # note negative system call numbernote negative system call numbernote negative system call numbernote negative system call number
000010d1 calll __sysenter_trapcalll __sysenter_trapcalll __sysenter_trapcalll __sysenter_trap
000010d6 ret
000010d7 nop
..
___mmap:
0000400c movl $0x000000c5,%eax # note positive system call number (# note positive system call number (# note positive system call number (# note positive system call number (197197197197))))
00004011 calll __sysenter_trap
..
__sysenter_trap:__sysenter_trap:__sysenter_trap:__sysenter_trap:
000013d8 popl %edx
000013d9 movl %esp,%ecx

Kernel/User APIs

So, you see EAX holds the system call number, which is passed to the Kernel, and *all* system calls
go through the same choke point – sysenter. Mach system calls are negative, BSD/POSIX calls –
positive.

(C) 2010 JL@HisOwn.com70

000013d9 movl %esp,%ecx
000013000013000013000013db sysenter # this is where the magic happensdb sysenter # this is where the magic happensdb sysenter # this is where the magic happensdb sysenter # this is where the magic happens
000013dd nopl (%eax)

Even better, KUNC can be used to display alerts. Unlike notices, alerts have up to three buttons,
enabling the user to select one, and essentially return a choice to the kernel code. The

Johnny's Lecture Notes on Mac OS X Internals Kernel/User APIs

enabling the user to select one, and essentially return a choice to the kernel code. The
KUNCUserNotificationDisplayAlert() adds three more arguments: AlternateButtonTitle,
OtherButtonTitle, and ResponseFlags. The two titles are of the corresponding buttons, and
“ResponseFlags” is an out parameter, which will contain the choice of the button pressed:

(C) 2010 JL@HisOwn.com78

Response Flags

kKUNCDefaultResponse User didn’t press any button (timeout)

kKUNCAlternateResponse User pressed the alternate button

kKUNCOtherResponse User pressed the “other” (3rd) button

kKUNCCancelResponse User pressed cancel

The I/O Workloop handles one or more “event sources”. There are currently six types of events,
handled by four types of sources, as shown above.

Johnny's Lecture Notes on Mac OS X Internals I/O Kit and Driver Events

handled by four types of sources, as shown above.

(C) 2010 JL@HisOwn.com106

IOEventSource

IODMAEventSource

IOFilterInterruptEventSource

IOInterruptEventSource

IOCommandGate IOTimerEventSource

All the various event sources are derived classes of the IOEventSource abstract class:

IOEventSource is a very simple class, which exports, among others, the following:

Method Used for

disable()/enable()/isEnabled() Disabling/Enabling source

setAction(IOEventSource::Action) Action to execute on event

Specific subclasses may export more functions, but these are the most important ones. setAction() is
used to install a callback for the event. IOEventSource::Action is a typedef of a function pointer:

typedef void (*Action)(OSObject *owner, ...);

Where “Owner” is usually the driver object itself (i.e. “this”).

Timers are useful event sources for implementing all sorts of timeouts in your driver. This comes in
handy when some device requests are asynchronous in nature, and your device has to respond

Johnny's Lecture Notes on Mac OS X Internals I/O Kit and Driver Events

handy when some device requests are asynchronous in nature, and your device has to respond
within a set time period. Using timers, you can set a device watchdog, and handle cases where the
response fails to arrive in a timely manner.

Timers offer several levels of granularity: Milliseconds (MS), Microseconds (US) or timer ticks. The
former two are absolute, but in the case of ticks, the timer resolution is dependent on the Kernel
value of HZ – usually 1/100th of a second. <IOKit/IOTypes.h> defines scale factors as an enum:

(C) 2010 JL@HisOwn.com107

enum {
kNanosecondScale = 1,
kMicrosecondScale = 1000,
kMillisecondScale = 1000 * 1000,
kSecondScale = 1000 * 1000 * 1000,
kTickScale = (kSecondScale / 100)

};

Timers can be created, using the IOTimerEventSource class. Its constructor takes two parameters:
the driver object itself, and the action – which is the handler function, which is an

Johnny's Lecture Notes on Mac OS X Internals I/O Kit and Driver Events

the driver object itself, and the action – which is the handler function, which is an
IOEventSource::Action object. Once the event source is created, it’s straightforward to add it to the
workloop, as shown above.

To implement the call back:

(C) 2010 JL@HisOwn.com108

void MyClass::TimeOutOccurred(OSObject *o, IOTimerEventSource *t)
{

// o is the “this” pointer, and “t” is the TimerEventSource..

IOLog("Timeout!\n"); // Normally, do something here..

}

It’s also important to remove the TimerEventSource in the free() function (which is why it should be
global in your driver):

if (timerSource != NULL) {
timerSource->cancelTimeout();
_workLoop->removeEventSource(timerSource);
timerSource->release();
timerSource = NULL;
}

Upon device addition, I/O relies on the bus driver to detect some change in the bus, and to create
nubs for the added device. To this nub, will be added one of several possible drivers for the device.

Johnny's Lecture Notes on Mac OS X Internals PnP

nubs for the added device. To this nub, will be added one of several possible drivers for the device.
The addition process is totally transparent to user mode, but in fact quite lengthy, in three stages:

(C) 2010 JL@HisOwn.com112

Stage I: Class Matching – by examining all drivers (in /System/Library/Extensions)
I/O kit isolates drivers whose PLists specify the bus as their IOProvider.
Families which do not match in any way are ignored.

Stage II: Passive matching – examines the Info.Plists even further, trying to find
provider match hints. These are different, according to each provider
(for example, PCI uses IOPCIMatch). But if the provider detects a
match, we have something to work with.

Stage III: Attempts active matching, by initializing each driver through its first stage
of the lifecycle. Recall:

detach free

init attach probe

Each driver returns a probe score, and the one with the highest score wins.

