
Launchd

At Your Service!

Jonathan Levin, j (-at-) Technologeeks.com

The Presenter

• Author:

– “Mac OS X and iOS Internals” (Wiley, 2012)

• http://newosxbook.com/

• 2nd Edition (Updates to 10.10/iOS 8) Due March 2015

– Taking reader requests: http://newosxbook.com/forum/index.php

– “Android Internals: A Confectioner’s Cookbook”

• First book to cover Android Internals: http://newandroidbook.com

• Trainer and Consultant

– CTO of Technologeeks.com (@Technologeeks)

The Presentation

• Launchd – functional overview

– Rehash of well documented stuff (RTFM, launchd.info, Wiki)

– The much more useful, albeit not-so-documented features

• Presentation: http://technologeeks.com/docs/launchd.pdf

• Bonus material: Chapter 7 of MOXiI (1st edition)

– http://newosxbook.com/articles/Ch07.pdf

• Also discusses iOS SpringBoard and OS X Finder

Launchd Roles

• Launchd is the very first process to startup

– PID 1, started directly by the kernel

• Will refuse to be started manually

– Can start per-user instances of itself

– One instance per logged on user (pre 10.10)
• Including system services such as _spotlight

• Post 10.10 – only one instance (uses XPC)

• Mission Statement:

– Launch (start) jobs (processes) by/with specified criteria

Launchd Roles
init

• Launchd takes over the traditional role of UN*X init

Source: Mac OS X/iOS Internals (1st), pg. 230

Daemons and Agents

• Daemons:

– Background services

– No UI (stdin/stdout/stderr redirected to /dev/null or file)

– Not dependent on user logon

• Agents*

– Run in the context of a user session

– May present a User Interface

* No Agents in iOS

Startup Paths

Source: Mac OS X/iOS Internals (1st), pg. 229

• Tip: Monitor these directories frequently

– Malware seeking persistence will likely leave traces there

Segue: Property Lists

• Apple favors this weird XML syntax. God knows why*.

• Terrible to read, easy to serialize (to a CFDictionary)

• No attributes. <key> elements, values follow.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

...

</dict>

</plist>

* - Actually, the people of NeXT do. This is yet another legacy of NeXTSTEP 3.3..

Segue: Property Lists

• Some property lists are compacted to the BPList form

– Especially in iOS, to save on precious XML-parser memory

– “file” recognizes these as “Apple binary property list”

• Use the plutil utility for quick conversions:

• Also useful to test if your plist is valid:

$ cat shell.plist | plutil -convert xml1 - -o -

$ plutil some.test.plist
OK

Launchd plist format

Key Type

Label String Unique Job identifier

Program

or

ProgramArguments

String Path to executable

Array of strings argv[0]...argv[argc-1]

• Required keys are straightforward:

... But the optional keys unlock the true functionality.

Launchd Roles
Resource Throttling

• Before forking the job, launchd can setrlimit(2):

– Define limits as array under Soft/HardResourceLimits

Limit key ulimit(1) equivalent

Core -c Maximum Core size

CPU -t CPU time (in seconds)

Data -d Size (in bytes) of Data segment

FileSize -f

MemoryLock -l Size (in bytes) of Maximum mlock(2)

NumberOfFiles -n # of open files

NumberOfProcesses -u # of processes forked

ResidentSetSize -m Size (in bytes) of max RAM usage

Stack -s Size (in bytes) of stack segment

Launchd Roles
Resource Throttling

• Additional throttling keys include:

Limit key Purpose

Nice Call nice(3) to adjust process priority

LowPriorityIO Throttle I/O of this job

TimeOut Idle timeout, in seconds

ExitTimeOut Interval (in seconds) between kill -TERM and -KILL

ThrottleInterval Spawn job not more than once every n seconds

EnablePressuredExit (10.10/iOS 8): Exit if memorystatus detects pressure

• Undocumented (in iOS): JetsamProperties

Limit key Restricts/Sets

JetsamMemoryLimit Memory limit, in MB

JetsamPriority Priority band. Implies app killability on low memory

10.10

• In addition to the command line, launchd controls:

Launchd Roles
Controlling launched jobs

Key Value Purpose

EnvironmentVariables Dictionary (strings) Pass environment to job

StandardInPath

StandardOutPath

StandardErrorPath

String Redirects stdin/stdout/stderr

Umask Integer Default umask(3) of process

RootDirectory String Chroot(2) to here

WorkingDirectory String Chdir(2) to here

User String Username to run job as

DisableASLR Boolean Address Space Randomization

WaitForDebugger Boolean Waits for gdb/lldb attachment

LegacyTimers Boolean [Non]-Coalesce job timers 10.9

Launchd Roles
Resource Throttling

• OS X 10.9+ and iOS support setting ProcessType:

ProcessType value Purpose

Standard Default Settings

Background Background process , low priority (~4), low limits

Interactive UI/interactive process , preferred priority (~47)

Adaptive Dynamic priority and limit adjustments

• Parameter passed to posix_spawnattr_setprocesstype_np

• Deprecates (the undocumented) POSIXSpawnType

Launchd Roles
Immortality (or, at least, reincarnation)

• Launchd can keep your job alive (KeepAlive)
– Use <true/> to keep alive always, or specify dictionary:

KeepAlive Condition Expects...

SuccessfulExit Boolean value – restart on [un]Successful exit ($? = 0)

NetworkState Boolean – keep job alive if network is [un]available

PathState Dictionary of filesystem paths and boolean values

OtherJobEnabled

OtherJobActive

Dictionary of other job labels and boolean values

Crashed Boolean – restart if crashed

• Deprecates older OnDemand key

10.10

Launchd Roles
atd/crond

• Supports periodic/scheduled execution:

Key

RunAtLoad Run job immediately when plist file is loaded

StartInterval Interval (min 10 seconds) to run job

StartCalendarInterval Specify WeekDay/Hour/Minute

(emulates UN*X crontab)

LaunchOnlyOnce Run job once, and never try again

Launchd Roles
inetd

• Incorporates classic inetd/xinetd functionality:

– <sockets> expects dictionary2 or dictionary or arrays

– By convention, use <listeners> dictionary

– Bonus: Register with Bonjour, and/or join MulticastGroup

Sockets dictionary key Values

SockType Stream (TCP) or Dgram (TCP)

SockProtocol TCP or UDP (redundant if using SockType)

SockFamily IPv4 or IPv6

SockServiceName Entry in /etc/services to resolve port

SockNodeName IP Address to bind to (default: 0.0.0.0 – INADDR_ANY)

SockPassive True if listen(2)ing, false if connect(2)ing

Launchd Roles
can your inetd do this?

• Sockets also extended to UN*X domain

– Same key <sockets> , same values, but:

Sockets dictionary key Values

SockType Stream , Dgram , or SeqPacket

SockPathName Path to socket representation on filesystem

SockFamily Unix

SockPathOwner Ownership of socket respresentation on filesystem

SockPathMode Permissions in decimal (e.g. 511 = 0777)

SecureSocketWithKey Random, secure name for socket, inherited via env. var

LimitLoad[To/From]..

• SessionType: May restrict daemon or agent to/from

– Aqua: GUI login

– LoginWindow: Pre-Login agent

– Background: background daemon, no UI

– System: root launchd context only

• Hardware: Restrict daemon/agent to/from machine

– Specify machines in “machine” dict

– As per Apple nomenclature (e.g. MacBook5,1)

10.9+:

Triggers

Key Purpose

WatchPaths Array of filenames to watch, and start job on

QueueDirectories Array of dirnames to watch, and start job on

StartOnMount Boolean – Start on any filesystem mount (autorun!)

• The documented trigger keys include:

Triggers

• The undocumented* LaunchEvents is FAR more potent:

– VFS Notifications (e.g. low disk)

– Network state notifications

– I/O kit notifications (device matching)

– Generic notifications

.. And therein lies the true power of launchd-based automation

(q.v. LibNotify’s notify_keys.h for a partial references)

* - Apple finally acknowledges LaunchEvents in the 10.10 launchd.plist man, but mostly as an obiter

VFS Notifications

<key>LaunchEvents</key>

<dict>

<key>com.apple.dispatch.vfs</key>

<dict>

<key>Monitor Low Disk Conditions</key>

<dict>

<key>LowDisk</key>

<integer>30</integer>

<key>VeryLowDisk</key>

<integer>0</integer>

</dict>

</dict>

...

com.apple.cache_delete.plist

Network State Notifications

<key>LaunchEvents</key>

<dict>

<key>com.apple.notifyd.matching</key>

<dict>

<key>com.apple.airport.userNotification</key>

<dict>

<key>Notification</key>

<string>com.apple.airport.userNotification</string>

</dict>

</dict>

</dict>

com.apple.networkd.plist

Network State Notifications
Location or network change

<key>LaunchEvents</key>

<dict>

<key>com.apple.notifyd.matching</key>

<dict>

<key>com.apple.locationd/Prefs</key>

<dict>

<key>Notification</key>

<string>com.apple.locationd/Prefs</string>

</dict>

<key>com.apple.system.hostname</key>

<dict>

<key>Notification</key>

<string>com.apple.system.hostname</string>

</dict>

</dict>

</dict>

com.apple.icloud.findmydeviced.plist

I/O Kit Notifications
Respond to any USB device

<key>LaunchEvents</key>

<dict>

<key>com.apple.iokit.matching</key>

<dict>

<key>com.apple.usb.device</key>

<dict>

<key>IOProviderClass</key>

<string>IOUSBDevice</string>

<key>idProduct</key>

<string>*</string>

<key>idVendor</key>

<string>*</string>

<key>IOMatchLaunchStream</key>

<true/>

</dict>

</dict>

</dict>

com.apple.usbd.plist

I/O Kit Notifications
Respond to BlueTooth devices

<key>LaunchEvents</key>

<dict>

<key>com.apple.iokit.matching</key>

<dict>

<key>com.apple.bluetooth.hostController</key>

<dict>

<key>IOProviderClass</key>

<string>IOBluetoothHCIController</string>

<key>IOMatchLaunchStream</key>

<true/>

</dict>

</dict>

</dict>

com.apple.blued.plist

Also check: com.apple.bluetoothaudiod.plist

Generic Notifications

<key>LaunchEvents</key>

<dict>

<key>com.apple.notifyd.matching</key>

<dict>

<key>ManualBackgroundTrigger</key>

<dict>

<key>Notification</key>

<string>com.apple.SoftwareUpdate.TriggerBackgroundCheck</string>

</dict>

<key>CheckForCatalogChange</key>

<dict>

<key>Notification</key>

<string>com.apple.SoftwareUpdate.CheckForCatalogChange</string>

</dict>

</dict>

...

com.apple.softwareupdated.plist

Launchd Roles
mach_init

• Supports Mach bootstrap server functionality

• Registers Mach services:

– well known (i.e. special) Mach ports

• HostSpecialPort directive

– Ephemeral (arbitrary) service ports

• MachServices directive

• Outside the scope of this talk, but SUPER powerful

– Esp. HostSpecialPort (override amfid, sandboxd, etc)

– ExceptionServer (e.g. CrashReporter)

Launchd Roles
XPC domain enforcement

• As of 10.7: Launchd serves as XPC focal point

• Idea: Limits visibility of Mach services to subdomains

– If you can’t see the service, you can’t use/abuse it

• Full discussion of XPC is also outside our scope..

Fun with launchd

• Control the beast with launchctl

– Command line, with optional shell (pre 10.10)

– Run as root to access global context

– Otherwise you can only see your own context

– Useful: load/unload, start/stop

Fun with launchd (10.10)

• Launchctl in 10.10/iOS 8 no longer interactive

• Old commands (somewhat) supported (bstree,bslist)

• New commands

– procinfo prints detailed information on any pid

• Entitlements

• Environment

• *some* Mach Ports (finally!)

– hostinfo prints host special ports

The Bad news...

• Launchd is an ongoing, highly evolving project

– 10.8: 442

– 10.9: 842

– 10.10: moved to libxpc 559 (560 in iOS 8)

• Source not available yet – and may not ever be

• Libxpc is a closed source project

• Open source days may be nearing their end

– Also true for XNU – Apple refactoring more into kec KEXTs

• Launchd & XPC to be fully “out”-ed in 2nd Ed of MOXiI

