http://NewAndroidBook.com
http://Technologeeks.com




About this talk

* Provides tour of Android security, and insecurity

e Updates Last Year’s talk

- Last year : Features This year: Vulnerabilities

- http://Technologeeks.com/files/AnSec2.0.pdf

e Covered in “Android Internals: A Confectioner’s Cookbook”
- Chapter 8, to be exact



Android Internals::about

“Android Internals: A Confectioner’s Cookbook”
— RAEEMNTANdroid BERS - Coming in Chinese (soon)
— "I} F X ™9 o= 2 0|=E QIE{'E” - In Korean (Oct!)

— Volume | (Available now): Power User’'s view

— Volume Il (Available with N): Developer’s View

— Unofficial sequel to Karim Yaghmour’'s “Embedded Android”, different focus:

* More on the how and why Android frameworks and services work

* More on Security (this talk is an excerpt from Volume I)
. . A Confectioner's Cookbook

. (presently) Only In-depth books on the SUbjeCt VOLUME II: THE DEVELOPER'S VIEW

— http://www.NewAndroidBook.com :

* Free and powerful tools, plus bonus materials

— Android Internals & Reverse Engineering: Oct 10t-14t. NYC
» http://Technologeeks.com/AIRE




Attack Surface

Mobile Security

e Threat models for mobiles consider three main vectors:

- Rogue applications (malware)
- Sandbox applications

- Enforce Strong Permissions

- Harden OS Component Security

- Drive-By/Targetted

App Security

REMOTE

- Code Injection via some malicious file format

- Rogue user (device theft, or unauthorized root)

- Lock Screen

- Secure Boot Process
- Encrypt User Data

Device Security




Trusted app may be
compromised as well

Subverted Trusted App

HTML/Plugin/MIME/etc

Any App

Attack Vectors (simplified)

Mobile Security

Malformed SMS/MMS

I

User carelessness

}

Arbitrary Code Execution

Permission mistake

Framework vulnerability

y

3 party daemon

Abuse system call

Linux kernel APIs
Unfettered access

Kernel Code Exec

Enforcing Mode provides
another layer of protection

Insecure, root
TTe-y \
Get system Get root
system_server runs all services
in same address space! l
: - Defeat SELinux
As of L, SELinux in

(C) 2016 Jonathan Levin & Technologeeks.com - Share

Total Compromise

freely, b&™ptea




Mediaserver compromise

Suberted Trusted App

Any App

3 AttaCk VECtO rS (exploited)

HTML/Plugin/MIME/etc

Mobile Security

Malformed SMS/MMS

I

User carelessness

}

Mediaserver compromise

\V

Arbitrary Code Execution

P

ermission mistake

Framework vulnerability

|

y

3 party daemon

Abuse system call

Get system

/ HTC WeakSauce T Iroot (futex bug)
owelroot (futex bug
. Other kernel 0-days

Get root

Don’'t get me started

Kernel Code Exec

|

(C) 2016 Jonathan Levin & Technologeeks.com - Share

Defeat SELinux

Total Compromise

freely, b&™ptea



Local Attacks (rogue app, malware) Remote Attacks (input channels) Mobile Security

HTML/Plugin/MIME/etc Malformed SMS/MMS

Any App

Trusted app may be
compromised as wel

Arbitrary Code Execution

Remote attacks become local when arbitrary codebman
executed successfully in the context of some valolerapp

Subverted Trusted App

3'd party daemons often less

—

User carelessness secure, and run as root/systen

Abuse system call

I
Framework vulnerability 3 party daemon Linux kernel can be

Permission mistake Attacked via syscalls

Get system Get root

system_server runs all services Kernel Code Exec
in same address space!

GOAL: Get Personal Data Defeat SELinux

As of L, SELinux in
Enforcing Mode provides _
another layer of protection GOAL: Total Compromise




Android Security

CVEs

e “Common Vulnerability Exposure” index
* Publishes and standardized security vulnerabilities

* Goal: Uniquely define particular and specific bugs

e Main database Is at *

e Searchable database is at

https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

* - (pronounced: might-er)

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Android Security

A little history

Table 8-1: Some of the most significant vulnerabilities in Android's History

CVE/Name Affects | Specificity | Vector Impact
The WebView component insecurely processes
CVE-2012-6636 |1.0-4.1 3rd Party Remote Javascript, compromising the default Android
Browser as well as application WebViews
luni/src/main/java/java/io/ObjectInputStream.java
CVE-2014-7911 ]1.0-4.x Android Local improper deserialization results in local code
execution as system
' Insecure ioctl1(2) in Qualcommm's QSEECOM
CVE-2014-4322  |4.x Vendor (msm) S driver yields arbitrary kernel memory overwrite
' arbitray kernel memory overwrite (Towelroot)
WeakSauce 4.x Vendor (HTC) Local The proprietary dmagent insecurely copies files,
enabling local privilege escalation (see book site)
Ty _ Arbitrary memory overwrite (exploited in the wild
CVE-2015-1805 |4xandup | Linux Local and only patched by Google on March 2016!)
CVE-2015-3636 4.%-6.0 Linux Local A use-after-free bug in the kernel leads to arbitrary
L memory overwrite (used by pingpong root).
CVE-2015-3824 4.% - 5.X Android Remote A vulnerability in the stagefright framework
allows arbitrary code execution in mediaserver
through a malformed MMS or video file
CVE-2016-0728 |4.4 and up Linux Local An integer overflow in keyrings facility enables a
privilege escalation (mitigated by SELinux in 5.0)
CVE-2016-0819 4.4-6.0.1 Vendor (msm) Local Vulnerabilities in Qualcomm specific drivers yield

CVE-2016-0819

arbitrary kernel memory overwrite

(C) 2016 Jonathan Levin & Technologeeks.com - Share

freely, but please cite source!



Android Security

Google Response

L /| §& Android 'Stagefright' exploit... x\-{-

. € | (i) www.androidcentral.com/stagefright El| ¢ Q Search

(RA#HMac 0...  J Weicome to JADE! [ ASN.1 JavaScript ...

— @ ondgdroidcentrolL REVIEWS APPS DEVICES HELP Q&A THE BEST

And for its part, Google in July reiterated to Android Central that there are multiple mechanisms in
place to protect users.

‘ ‘ We thank Joshua Drake for his contributions. The security of Android users is extremely
important to us and so we responded quickly and patches have already been provided to
partners that can be applied to any device.

Most Android devices, including all newer devices, have multiple technologies that are

designed to make exploitation more difficult. Android devices also include an application
sandbox designed to protect user data and other applications on the device.

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Android Security

Android Application Security Model

* Android’s security Is derived from that of Linux and Java

* Linux inheritance:
- Applications run as separate UIDs

- Kernel supports miscellaneous tweaks
- Network access filtered in kernel by UserlD

- SELinux (“SEAnNdroid”) policies used extensively

« Java Inheritance:
- Dalvik VM provides sandbox for applications

- Declarative security model for operations

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Android Security

Android Architecture

Applicati
PREGETONS Contacts
PlI
Dalvik Permissions SMS
Most malware
Code Signatures Dalvik VM

: e Native Libraries
Unix permissions,

Capabilities
P System level attacks

SELinux,

_ RootKits
Kernel Hardening

Hardware
TrustZone

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!




Android Security

Android Code Bases

Applications

Dalvik Permissions

Code Signatures

Unix permissions,
Capabilities

SELinux,
Kernel Hardening

3'd Party

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!




Android Security

Scope of Vulnerabilities

34 Party | ;. Affects only devices with installed App

AOSP | : Affects ALL Android devices (global)

Vendor | . Affects device vendor or chipset vendor

IhiRix : Universal (also desktops, servers)

- Recommended: Monoculture on back of envelope (Geer, Usenix 2005)

3'd Party
AOSP

Vendor

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Android Security

Updates (or lack thereof)

e Android is becoming Windows of the mobile world
Microsoft , 2004 : Google : 2016

« Android’s Update Policy is simply horrendous

— Getting better with N (finally)
— Still problematic due to existing fragmentation
— Exacerbated by vendor, carrier policies

e Impact: 70-80% devices left vulnerable, unpatched

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Tour of Android Vulnerabilities



Code Injection

Prelude: Vectors for Code Injection

o Buffer Overflows (stack: rare, heap: uncommon)
— Example: char *c¢c = malloc(10); strcpy (c, str...);

 Integer Overflows (common)
— Example:inta;intb; intc=a+b
— Lethal when used as basis for malloc()

o Use-After-Free (ubiquitous)
— Example: char *c = malloc(..); free (c); *c =....;

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Code Injection

CounterMeasures for Code Injection

— Isolation/sandboxing, pray SELinux works
— ASLR (ELF PIE + randomize va_space)
—DEP
— Stack Canaries and compiler level protections.
— PXN (Privileged eXecute Never)

— Restrict dmesg and kernel pointers (via sysctl)
» kernel.kptr_restrict = 2

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Code Injection

Counter-

CounterMeasures for Code Injection

Opt-in, still not tight enough, keep praying

— Isolation/sandboxing, pray SELinux works
_ Info Leaks, Feng Shui, sprays
— ASLR (ELF PIE + randomize va_space)

— DEP Return Oriented Programming (ROP)

: : Directed overwrite
— Stack Canaries and compiler level protections.

— PXN (Privileged execute Never) Overflow in kernel

— Restrict dmesg and kernel pointers (via sysctl)
» kernel.kptr_restrict = 2 Info Leaks, sprays in kernel

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Top 3 risks - #3: File Formats

File Formats: Codec, HTML/CSS, JS

— Vector: Remote (and also Local)
— Impact: Privilege Escalation — usually media/drm/system

— Reason: overly complex formats, interpreters
« Particularly, CSS/JS parsing, media files

— Countermeasures:

« Standard Code Injection Countermeasures
o SELINUX

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!

Top 3 Risks



Top 3 Risks

Top 3 risks - #3: File Formats

o Case Study:
— (Another) StageFright Bug (CVE-2015-3864)

1886 case FOURCC('t', 'x', '3', 'g"):
1887 {
1888 uint32_t type;
1889 const void *data;
1890 size t size = 0;
1891 if (!mLastTrack->meta->findData(
1892 kKeyTextFormatData, &type, &data, &size)) {
1893 size = 0;
1894 }
895
1896 uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];
1897 if (buffer == NULL) ({
1898 return ERROR_MALFORMED;
1899 }
1900
1901 if (size > 0) {
1902 memcpy (buffer, data, size);
1903 }
1904
1905 if ((size_t)(mDataSource->readAt(*offset, buffer + size, chunk_size))
1906 < chunk size) {
1907 delete[ ] buffer;
1908 buffer = NULL;

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Top 3 Risks

Top 3 risks - #2: Binder

 Binder: Deliberately Malformed parcels

- Vector: Local

- Impact: Privilege Escalation — system, likely root
- Reason: LOUSY NATIVE CODE, NO AIDL

- CounterMeasures: .v. Code Injection

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Top 3 Risks

Top 3 risks - #2: Binder

e Case Study #1.
— LibCUtlls—CVE-2015-1528 (< 5.1)

— http://seclists.org/fulldisclosure/2015/Mar/63

— https://www.blackhat.com/docs/us-15/materials/us-15  -Gong-Fuzzing-
Android-System-Services-By-Binder-Call-To-Escalate-  Privilege-wp.pdf

o Case Study #2:
— “Hey, Your Parcel Looks Bad” (BlackHat Asia ‘16)

https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-
Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android. pdf

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Top 3 Risks

Top 3 risks - #1: Linux Kernel

Linux Kernel: vulnerable system calls, or network stack
- Vector: Local (usually), Remote (very rare)
- Impact: Full system compromise

- Reason: Too many cooks, with too many features

Solution: SELInux

 Limited scope, not designed for app security

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Top 3 Risks

Top 3 risks - #1: Linux Kernel

o Case Study #1.
— TowelRoot (CVE-2014-3153) — futex bug

o Case Study #2:
— PingPong Root (CVE-2015-3636 ) — ICMP sockets

o Case Study #3: (SELIinux blocks this one)
— Keyrings (CVE-2016-0728)
— https://www.exploit-db.com/exploits/40003/

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Untrustworthy TrustZone

Bonus Risk: TrustZone

« ARMvV7/v8 memory separation at bus level

 SCR separates “secure world” from non secure
— In ARMvVS, coupled with Exception Levels (ELX)

 “Secure World” runs own OS(!), providing:

— Keystore Access (“hardware backed cryptography)

— Gatekeeper Functionality (crypto-tokens)

— PRNG

— Boot/System Integrity verification (e.g. Samsung TIMA)

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Untrustworthy TrustZone

Android & TrustZone

com.android.application

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but pleas



Untrustworthy TrustZone

TrustZone Vulnerabilities

e Problem: TZ OS is often vendor defined, closed source

— Google trying to standardize with “Trusty OS”
— Qualcomm (most common) has own, and BUGGY

e http://bits-please.blogspot.com
— AMAZING detail of trustzone exploitation on MSM, step-by-step
— Particularly as of /2015/03/getting-arbitrary-code-execution-in.htmi

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Untrustworthy TrustZone

Android Vulnerabilities

CVE-2015-6639 ANDROID-24446875* Critical 5.0,5.1.1, 6.0, 6.0.1 Sep 23,2015

CVE-2015-6647 ANDROID-24441554* Critical 5.0,5.1.1, 6.0, 6.0.1 Sep 27,2015

CVE-2016-0825 ANDROID-20860039* High 6.0.1 Google Internal

CVE-2016-2431 24968809* Critical Nexus 5, Nexus 6, Nexus 7 Oct 15,2015
(2013), Android One

CVE-2016-2432 25913059* Critical Nexus 6, Android One Nov 28, 2015

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Android Security

Hindsight is 20/20

o All the CVEs discussed are obvious, in retrospect:

“Reports that say that something hasn't happened are always interesting to
me, because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also unknown
unknowns — the ones we don't know we don't know. And if one looks
throughout the history of our country and other free countries, it is the latter
category that tend to be the difficult ones.

D. Rumsfeld, 2002,
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptiD=2636

 Known knowns = CVEs, Past Vulnerabilities
* Known unknowns = Vulnerabilities we suspect
e Unknown unknowns = 0-days in the wild

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



So, overall..

e Sad Truth: Android “spitballs” Linux features together

e Sometimes it sticks. More often than not.. It doesn't.

(C) 2016 Jonathan Levin & Technologeeks.com - Share  freely, but please cite source!



Resources

e The Book website:

e Technologeeks.com:

 Android Internals:



